On Exponential Sums and Group Generators for Elliptic Curves over Finite Fields

  • David R. Kohel
  • Igor E. Shparlinski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1838)

Abstract

In the paper an upper bound is established for certain exponential sums, analogous to Gaussian sums, defined on the points of an elliptic curve over a prime finite field. The bound is applied to prove the existence of group generators for the set of points on an elliptic curve over \(\mathbb{F}_{q}\) among certain sets of bounded size. We apply this estimate to obtain a deterministic O(q 1/2 + ε) algorithm for finding generators of the group in echelon form, and in particular to determine its group structure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bach, E., Shallit, J.: Algorithmic Number Theory. MIT Press, Cambridge (1996)MATHGoogle Scholar
  2. 2.
    Bombieri, E.: On exponential sums in finite fields. Amer. J. Math. 88, 71–105 (1966)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chalk, J.H.H.: Polynomial congruences over incomplete residue systems modulo k. Proc. Kon. Ned. Acad. Wetensch. A92, 49–62 (1989)MathSciNetGoogle Scholar
  4. 4.
    Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Elkies, N.: Elliptic and modular curves over finite fields and related computational issues. Computational perspectives on number theory (Chicago, IL, 1995), Stud. Adv. Math., 7, 21–76. Amer. Math. Soc., Providence, RI (1998)Google Scholar
  6. 6.
    Gong, G., Bernson, T.A., Stinson, D.A.: Elliptic curve pseudorandom sequence generators. Research Report CORR-98-53, Faculty of Math., Univ. of Waterloo, 1–21 (1998)Google Scholar
  7. 7.
    Hallgren, S.: Linear congruential generators over elliptic curves. Preprint CS-94- 143, Dept. of Comp. Sci., Cornegie Mellon Univ, 1–10 (1994)Google Scholar
  8. 8.
    Lidl, R., Niederreiter, H.: Finite Fields. Cambridge Univ. Press, Cambridge (1997)Google Scholar
  9. 9.
    Menezes, A.J., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms to logarithms in a finite field. Trans. IEEE Inform. Theory 39, 1639–1646 (1993)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Menezes, A.J.: Elliptic Curve Public Key Cryptosystems. Kluwer Acad. Publ., Boston (1993)MATHGoogle Scholar
  11. 11.
    Schoof, R.J.: Elliptic curves over finite fields and the computation of square roots Mod p. Math. Comp. 44, 483–494 (1985)MATHMathSciNetGoogle Scholar
  12. 12.
    Shoup, V.: Searching for primitive roots in finite fields. Math. Comp. 58, 369–380 (1992)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Shparlinski, I.E.: On primitive elements in finite fields and on elliptic curves. Matem. Sbornik 181, 1196–1206 (1990) (in Russian)Google Scholar
  14. 14.
    Shparlinski, I.E.: On Gaussian sums for finite fields and elliptic curves. In: Lobstein, A., Litsyn, S.N., Zémor, G., Cohen, G. (eds.) Algebraic Coding 1991. LNCS, vol. 573, pp. 5–15. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  15. 15.
    Shparlinski, I.E.: On finding primitive roots in finite fields. Theor. Comp. Sci. 157, 273–275 (1996)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Shparlinski, I.E.: Finite Fields: Theory and Computation. Kluwer Acad. Publ., North-Holland (1999)MATHGoogle Scholar
  17. 17.
    Shparlinski, I.E.: On the Naor–Reingold pseudo-random function from elliptic curves. Appl. Algebra in Engin., Commun. and Computing (to appear)Google Scholar
  18. 18.
    Silverman, J.H.: The Arithmetic of Elliptic Curves. Springer, Berlin (1995)Google Scholar
  19. 19.
    Vinogradov, I.M.: Elements of Number Theory. Dover Publ., NY (1954)MATHGoogle Scholar
  20. 20.
    Weil, A.: Basic of Number Theory. Spinger, Heidelberg (1974)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • David R. Kohel
    • 1
  • Igor E. Shparlinski
    • 2
  1. 1.School of Mathematics and StatisticsUniversity of SydneyAustralia
  2. 2.Department of ComputingMacquarie UniversityAustralia

Personalised recommendations