A One Round Protocol for Tripartite Diffie–Hellman

  • Antoine Joux
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1838)


In this paper, we propose a three participants variation of the Diffie-Hellman protocol. This variation is based on the Weil and Tate pairings on elliptic curves, which were first used in cryptography as cryptanalytic tools for reducing the discrete logarithm problem on some elliptic curves to the discrete logarithm problem in a finite field.


Elliptic Curve Elliptic Curf Discrete Logarithm Elliptic Curve Cryptography Discrete Logarithm Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution system. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  2. 2.
    Chabaud, F., Lercier, R.: The ZEN library.,
  3. 3.
    Frey, G., Rück, H.: A remark concerning m-divisibility and the discrete logarithm in the divisor class group of curves. Mathematics of Computation 62, 865–874 (1994)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Harasawa, R., Shikata, J., Suzuki, J., Imai, H.: Comparing the MOV and FR reductions in elliptic curve cryptography. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 190–205. Springer, Heidelberg (1999)Google Scholar
  5. 5.
    Lay, G.-J., Zimmer, H.: Constructing elliptic curves with given group order over large finite fields. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 250–263. Springer, Heidelberg (1994)Google Scholar
  6. 6.
    Lercier, R.: Algorithmique des courbes elliptiques dans les corps finis. thése, École polytechnique (June 1997)Google Scholar
  7. 7.
    Menezes, A.: Elliptic curve public key cryptosystems. Kluwer Academic Publishers, Dordrecht (1994)Google Scholar
  8. 8.
    Menezes, A., Okamoto, T., Vanstone, S.: Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Transaction on Information Theory 39, 1639–1646 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Miller, V.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–428. Springer, Heidelberg (1986)Google Scholar
  10. 10.
    Semaev, I.: Evaluation of discrete logarithms in a group of p-torsion points of an elliptic curve in characteristic p. Mathematics of Computation 67, 353–356 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Smart, N.: The discrete logarithm problem on elliptic curves of trace one (1997) (preprint)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Antoine Joux
    • 1
  1. 1.SCSSIIssy-les-Mx CedexFrance

Personalised recommendations