Rational Points Near Curves and Small Nonzero | x3y2| via Lattice Reduction

  • Noam D. Elkies
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1838)

Abstract

We give a new algorithm using linear approximation and lattice reduction to efficiently calculate all rational points of small height near a given plane curve C. For instance, when C is the Fermat cubic, we find all integer solutions of | x 3 + y 3 −z 3| < M with 0 < xy < z < N in heuristic time ≪ (log O(1) N ) M provided MN, using only O(log N) space. Since the number of solutions should be asymptotically proportional to M log N (as long as M < N 3), the computational costs are essentially as low as possible. Moreover the algorithm readily parallelizes. It not only yields new numerical examples but leads to theoretical results, difficult open questions, and natural generalizations. We also adapt our algorithm to investigate Hall’s conjecture: we find all integer solutions of 0 < |x 3y 2| ≪x 1/2 with x < X in time O(X 1/2log O(1) X). By implementing this algorithm with X = 1018 we shattered the previous record for x 1/2/|x 3y 2|. The O(X 1/2log O(1) X) bound is rigorous; its proof also yields new estimates on the distribution mod 1 of (cx)3/2 for any positive rational c.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B1]
    Bernstein, D.J.: Enumerating solutions to p(a)+q(b)=r(c)+s(d). Math. of Computation (to appear)Google Scholar
  2. [B2]
    Bremner, A.: Sums of three cubes. In: Number Theory (Halifax, Nova Scotia, 1994) (CMS Conf. Proc.15), pp. 87–91. AMS, Providence (1995)Google Scholar
  3. [BCHS]
    Birch, B.J., Chowla, S., Hall Jr., M., Schinzel, A.: On the difference x3 – y2. Norske Vid. Selsk. Forh. 38, 65–69 (1965)MATHMathSciNetGoogle Scholar
  4. [BP]
    Bombieri, E., Pila, J.: The number of integral points on arcs and ovals. Duke Math. J. 59(2), 337–357 (1989)MATHCrossRefMathSciNetGoogle Scholar
  5. [BW]
    Bruce, J.W., Wall, C.T.C.: On the classification of cubic surfaces. J. LondonMath. Soc. 19(2)(2), 245–256 (1979)MATHCrossRefMathSciNetGoogle Scholar
  6. [C2]
    Cremona, J.E.: Algorithms for modular elliptic curves. Cambridge University Press, Cambridge (1992)MATHGoogle Scholar
  7. [CI]
    Colin, H.L.: New Bounds on Sphere Backings. Ph.D. thesis, Harvard (2000)Google Scholar
  8. [CM]
    Crux Mathematicorum 8 (1982) Google Scholar
  9. [CS]
    Conway, J.H., Sloane, N.J.A.: Sphere Backings, Lattices and Groups. Springer, New York (1993)Google Scholar
  10. [CV]
    Conn, W., Vaserstein, L.N.: On sums of integral cubes. The Bademacher legacy to mathematics (University Park, 1992). Contemp. Math. AMS 166, 285–294 (1994)MathSciNetGoogle Scholar
  11. [Dl]
    Danilov, L.V.: The Diophantine equation x3 – y2 = k and Hall’s conjecture. Math. Notes Acad. Set. USSB 32, 617–618 (1982)CrossRefGoogle Scholar
  12. [D2]
    Davenport, H.: On f3(t) - g2(t). Norske Vid. Selsk. Forh. 38, 86–87 (1965)MATHMathSciNetGoogle Scholar
  13. [El]
    Elkies, N.D.: On A4 + B4 + C4 = D4. Math. of Computational 51(184), 825–835 (1988)MATHMathSciNetGoogle Scholar
  14. [E2]
    Elkies, N.D.: ABC implies Mordell. International Math. Besearch Notices 7, 99–109 (1991)CrossRefMathSciNetGoogle Scholar
  15. [E3]
    Elkies, N.D.: Heegner point computations. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 122–133. Springer, Heidelberg (1994)Google Scholar
  16. [E4]
    Elkies, N.D.: Elliptic and modular curves over finite fields and related computational issues. In: Buell, D.A., Teitelbaum, J.T. (eds.) Computational Berspectives on Number Theory: Points Near Curves and Hall’s Conjecture via Lattice Reduction 63 Proceedings of a Conference in Honor of A.O.L. Atkin, pp. 21–76. AMS/International Press (1998) Google Scholar
  17. [E5]
    Elkies, N.D.: Shimura curve computations. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 1–47. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. [F]
    Fricke, R.: Ueber eine einfache Gruppe von 504 Operationen. Math. Ann. 52, 321–339 (1899)MATHCrossRefMathSciNetGoogle Scholar
  19. [FH]
    Fulton, W., Harris, J.: Representation Theory: A First Course, GTM 129. Springer, New York (1991)Google Scholar
  20. [GPZ]
    Gebel, J., Petho, A., Zimmer, H.G.: On Mordell’s equation. Compositio Math. 110, 335–367 (1998)MATHCrossRefMathSciNetGoogle Scholar
  21. [G]
    Guy, R.K.: Unsolved Problems in Number Theory. Springer, New York (1981)MATHGoogle Scholar
  22. [H]
    Hall, M.: The Diophantine equation x3 – y2 = k. In: Atkin, A., Birch, B. (eds.) Computers in Number Theory, pp. 173–198. Academic Press, London (1971)Google Scholar
  23. [HB1]
    Heath-Brown, D.R.: The density of zeros of forms for which weak approximation fails. Math. of Computation 59(200), 613–623 (1992)MATHCrossRefMathSciNetGoogle Scholar
  24. [HB2]
    Heath-Brown, D.R.: The density of rational points on projective hypersurfaces (2000) (preprint)Google Scholar
  25. [HBLR]
    Heath-Brown, D.R., Lioen, W.M., te Riele, H.J.J.: On solving the Diophantine equation x3 + y3 + z3 = k on a vector computer. Math. of Computation 61(203), 235–244 (1993)MATHGoogle Scholar
  26. [KK]
    Keller, W., Kulesz, L.: Courbes algebriques de genre 2 et 3 possedant de nombreux points rationnels. C. R. Acad. Sci. Paris, Ser. I Math. 321(11), 1469–1472 (1995)MATHMathSciNetGoogle Scholar
  27. [KTS]
    Koyama, K., Tsuruoka, U., Sekigawa, H.: On searching for solutions of the Diophantine equation x3 + y3 + z3 = n. Math. of Computation 66(218), 841–851 (1997)MATHCrossRefMathSciNetGoogle Scholar
  28. [L]
    Lang, S.: Old and new conjectured diophantine inequalities. Bull. Amer. Math. Society 23, 37–75 (1990)MATHCrossRefGoogle Scholar
  29. [Ml]
    Macbeath, A.M.: On a curve of genus. Proc. London Math. Soc. 7(15), 527–542 (1965)CrossRefMathSciNetGoogle Scholar
  30. [M2]
    Mahler, K.: Lectures on Transcendental Numbers. Lecture Notes in Math., vol. 546. Springer, Berlin (1976)MATHGoogle Scholar
  31. [M3]
    Mason, R.C.: Diophantine Equations over Function Fields. London Math. Soc. Lecture Notes Series 96. Cambridge Univ. Press, Cambridge (1984); See also pp. 149–157 in Springer LNM 1068 [=proceedings of Journees Arithmetiques 1983, Noordwijkerhout] (1984)MATHGoogle Scholar
  32. [O]
    Oesterlé, J.: Nouvelles approches du theorémé de Fermat. Sem. Bourbaki 2(88), 694 (exposé)Google Scholar
  33. [P]
    Pila, J.: Geometric postulation of a smooth function and the number of rational points. Duke Math. J. 63, 449–463 (1991)MATHCrossRefMathSciNetGoogle Scholar
  34. [PV]
    Payne, G., Vaserstein, L.N.: Sums of three cubes. In: The Arithmetic of Function Fields, pp. 443–454. de Gruyter, Berlin (1992)Google Scholar
  35. [S]
    Stahlke, C.: Algebraic curves over Q with many rational points and minimal automorphism group. International Math. Research Notices 1, 1–4 (1997)CrossRefMathSciNetGoogle Scholar
  36. [T]
    Takeuchi, K.: Commensurability classes of arithmetic triangle groups. J. Fac. Sci. Univ. Tokyo 24, 201–212 (1977)MATHGoogle Scholar
  37. [Wl]
    Weil, A.: Abstract versus classical algebraic geometry. In: Proceedings of the International Congress of Mathematicians, Amsterdam, vol. III, pp. 550–558 (1954)Google Scholar
  38. [W2]
    Wildanger, K.: Uber das Losen von Einheiten- und Lndexformgleichungen in algebraischen Zahlkorpern mit einer Anwendung auf die Bestimmung alter ganzen Punkte einer Mordellschen Kurve. Ph.D. Thesis, TU Berlin, Berlin (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Noam D. Elkies
    • 1
  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations