Advertisement

Termination and Confluence of Higher-Order Rewrite Systems

  • Frédéric Blanqui
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1833)

Abstract

In the last twenty years, several approaches to higher-order rewriting have been proposed, among which Klop’s Combinatory Rewrite Systems (CRSs), Nipkow’s Higher-order Rewrite Systems (HRSs) and Jouannaud and Okada’s higher-order algebraic specification languages, of which only the last one considers typed terms. The later approach has been extended by Jouannaud, Okada and the present author into Inductive Data Type Systems (IDTSs). In this paper, we extend IDTSs with the CRS higher-order pattern-matching mechanism, resulting in simply-typed CRSs. Then, we show how the termination criterion developed for IDTSs with first-order pattern-matching, called the General Schema, can be extended so as to prove the strong normalization of IDTSs with higher-order pattern-matching. Next, we compare the unified approach with HRSs. We first prove that the extended General Schema can also be applied to HRSs. Second, we show how Nipkow’s higher-order critical pair analysis technique for proving local confluence can be applied to IDTSs.

Appendices A, B and C (proofs) are available from the web page.

Keywords

Induction Hypothesis General Schema Function Symbol Critical Pair Process Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aczel, P.: A general Church-Rosser theorem. Technical report, University of Manchester, United Kingdom (1978) Google Scholar
  2. 2.
    Barbanera, F., Fernández, M., Geuvers, H.: Modularity of strong normalization in the algebraic-λ-cube. Journal of Functional Programming 7(6) (1997)Google Scholar
  3. 3.
    Barendregt, H.: Lambda calculi with types. In: Abramski, S., Gabbai, D.M., Maiboum, T.S.E. (eds.) Handbook of logic in computer science, vol. 2, Oxford University Press, Oxford (1992)Google Scholar
  4. 4.
    Blanqui, F., Jouannaud, J.-P., Okada, M.: The Calculus of Algebraic Constructions. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, p. 301. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Blanqui, F., Jouannaud, J.-P., Okada, M.: Inductive Data Type Systems (1998), To appear in TCS, Available at http://www.lri.fr/~blanqui/
  6. 6.
    Breazu-Tannen, V.: Combining algebra and higher-order types. In: Proc. of LICS 1988, IEEE Computer Society, Los Alamitos (1988)Google Scholar
  7. 7.
    Breazu-Tannen, V., Gallier, J.: Polymorphic rewriting conserves algebraic strong normalization. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372, Springer, Heidelberg (1989)Google Scholar
  8. 8.
    Breazu-Tannen, V., Gallier, J.: Polymorphic rewriting conserves algebraic strong normalization. Theoretical Computer Science 83(1) (1991)Google Scholar
  9. 9.
    Hindley, J.R., Seldin, J.P.: Introduction to combinators and λ-calculus. London Mathematical Society (1986)Google Scholar
  10. 10.
    INRIA-Rocquencourt/CNRS/Université Paris-Sud/ENS Lyon, France. The Coq Proof Assistant Reference Manual Version 6.3 (1999), Available at http://pauillac.inria.fr/coq/
  11. 11.
    Jouannaud, J.-P., Okada, M.: Executable higher-order algebraic specification languages. In: Proc. of LICS 1991, IEEE Computer Society, Los Alamitos (1991)Google Scholar
  12. 12.
    Jouannaud, J.-P., Okada, M.: Abstract Data Type Systems. Theoretical Computer Science 173(2) (1997)Google Scholar
  13. 13.
    Jouannaud, J.-P., Rubio, A.: The Higher-Order Recursive Path Ordering. In: Proc. of LICS 1999, IEEE Computer Society, Los Alamitos (1999)Google Scholar
  14. 14.
    Khasidashvili, Z.: Expression Reduction Systems. In: Proc. of I. Vekua Institute of Applied Mathematics, vol. 36 (1990)Google Scholar
  15. 15.
    Klop, J.W.: Combinatory Reduction Systems. PhD thesis, University of Utrecht, Netherlands (1980), Published as Mathematical Center Tract 129 Google Scholar
  16. 16.
    Klop, J.W., van Oostrom, V., van Raamsdonk, F.: Combinatory reduction systems: introduction and survey. Theoretical Computer Science 121(1-2) (1993)Google Scholar
  17. 17.
    Luo, Z., Pollack, R.: LEGO Proof Development System: User’s manual. University of Edinburgh, Scotland (1992)Google Scholar
  18. 18.
    Mayr, R., Nipkow, T.: Higher-order rewrite systems and their confluence. Theoretical Computer Science, 192 (1998)Google Scholar
  19. 19.
    Mendler, N. P.: Inductive Definition in Type Theory. PhD thesis, Cornell University, United States (1987) Google Scholar
  20. 20.
    Miller, D.: A logic programming language with lambda-abstraction, function variables, and simple unification. In: Schroeder-Heister, P. (ed.) ELP 1989. LNCS, vol. 475, Springer, Heidelberg (1991)CrossRefGoogle Scholar
  21. 21.
    Miller, D., Nadathur, G.: An overview of λProlog. In: Proc. of the 5th Int. Conf. on Logic Programming (1988)Google Scholar
  22. 22.
    Müller, F.: Confluence of the lambda calculus with left-linear algebraic rewriting. Information Processing Letters 41 (1992)Google Scholar
  23. 23.
    Nipkow, T.: Higher-order critical pairs. In: Proc. of LICS 1991, IEEE Computer Society, Los Alamitos (1991)Google Scholar
  24. 24.
    Okada, M.: Strong normalizability for the combined system of the typed lambda calculus and an arbitrary convergent term rewrite system. In: Proc. of ISSAC 1989, ACM Press, New York (1989)Google Scholar
  25. 25.
    Paulson, L.: Isabelle: a generic theorem prover. In: Paulson, L.C. (ed.) Isabelle. LNCS, vol. 828, Springer, Heidelberg (1994)CrossRefGoogle Scholar
  26. 26.
    Tait, W.W.: Intensional interpretations of functionals of finite type I. Journal of Symbolic Logic 32(2) (1967)Google Scholar
  27. 27.
    Takahashi, M.: λ-calculi with conditional rules. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, Springer, Heidelberg (1993)CrossRefGoogle Scholar
  28. 28.
    van de Pol, J., Schwichtenberg, H.: Strict functionals for termination proofs. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, Springer, Heidelberg (1995)CrossRefGoogle Scholar
  29. 29.
    van Oostrom, V.: Confluence for Abstract and Higher-Order Rewriting. PhD thesis, Vrije Universiteit, Netherlands (1994) Google Scholar
  30. 30.
    van Oostrom, V.: Development closed critical pairs. In: Dowek, G., Heering, J., Meinke, K., Möller, B. (eds.) HOA 1995. LNCS, vol. 1074, Springer, Heidelberg (1996)Google Scholar
  31. 31.
    van Oostrom, V., van Raamsdonk, F.: Comparing Combinatory Reduction Systems and Higher-order Rewrite Systems. In: Heering, J., Meinke, K., Möller, B., Nipkow, T. (eds.) HOA 1993. LNCS, vol. 816, Springer, Heidelberg (1994)Google Scholar
  32. 32.
    van Raamsdonk, F.: Confluence and Normalization for Higher-Order Rewriting. PhD thesis, Vrije Universiteit, Netherlands (1996) Google Scholar
  33. 33.
    Wolfram, D.: The clausal theory of types. PhD thesis, University of Cambridge, United Kingdom (1990) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Frédéric Blanqui
    • 1
  1. 1.LRIUniversité de Paris-Sud, Bât. 490OrsayFrance

Personalised recommendations