An Infrastructure for Intertheory Reasoning

  • William M. Farmer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1831)


The little theories method, in which mathematical reasoning is distributed across a network of theories, is a powerful technique for describing and analyzing complex systems. This paper presents an infrastructure for intertheory reasoning that can support applications of the little theories method. The infrastructure includes machinery to store theories and theory interpretations, to store known theorems of a theory with the theory, and to make definitions in a theory by extending the theory “in place”. The infrastructure is an extension of the intertheory infrastructure employed in the IMPS Interactive Mathematical Proof System.


Theory Method Theory Object Proof System Conservative Extension Event Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth through Proof. Academic Press, London (1986)zbMATHGoogle Scholar
  2. 2.
    Burstall, R., Goguen, J.: The semantics of Clear, a specification language. In: Bjorner, D. (ed.) Abstract Software Specifications. LNCS, vol. 86, pp. 292–332. Springer, Heidelberg (1980)Google Scholar
  3. 3.
    Church, A.: A formulation of the simple theory of types. Journal of Symbolic Logic 5, 56–68 (1940)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, London (1972)zbMATHGoogle Scholar
  5. 5.
    Farmer, W.M.: A partial functions version of Church’s simple theory of types. Journal of Symbolic Logic 55, 1269–1291 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Farmer, W.M.: A simple type theory with partial functions and subtypes. Annals of Pure and Applied Logic 64, 211–240 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Farmer, W.M.: A general method for safely overwriting theories in mechanized mathematics systems. Technical report, The MITRE Corporation (1994)Google Scholar
  8. 8.
    Farmer, W.M.: Theory interpretation in simple type theory. In: Heering, J., Meinke, K., Möller, B., Nipkow, T. (eds.) HOA 1993. LNCS, vol. 816, pp. 96–123. Springer, Heidelberg (1994)Google Scholar
  9. 9.
    Farmer, W.M., Guttman, J.D., Thayer Fábrega, F.J.: IMPS: An updated system description. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 8–302. Springer, Heidelberg (1996)Google Scholar
  10. 10.
    Farmer, W.M., Guttman, J.D., Thayer, F.J.: Little theories. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 567–581. Springer, Heidelberg (1992)Google Scholar
  11. 11.
    Farmer, W.M., Guttman, J.D., Thayer, F.J.: IMPS: An Interactive Mathematical Proof System. Journal of Automated Reasoning 11, 213–248 (1993)zbMATHCrossRefGoogle Scholar
  12. 12.
    Goguen, J.A., Winkler, T.: Introducing OBJ3. Technical Report SRI-CSL-99-9, SRI International (August 1988)Google Scholar
  13. 13.
    Gordon, M.J.C., Melham, T.F.: Introduction to HOL: A Theorem Proving Environment for Higher Order Logic. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  14. 14.
    Hamilton, N., Nickson, R., Traynor, O., Utting, M.: Interpretation and instantiation of theories for reasoning about formal specifications. In: Pate, M. (ed.) Proceedings of the Twentieth Australasian Computer Science Conference. Australian Computer Science Communications, vol. 19, pp. 37–45 (1997)Google Scholar
  15. 15.
    Kaufmann, M., Moore, J.S.: Structured theory development for a mechanized logic (1999), Available at
  16. 16.
    Nakajima, R., Yuasa, T. (eds.): The IOTA Programming System. LNCS, vol. 160. Springer, Heidelberg (1982)Google Scholar
  17. 17.
    Nickson, R., Traynor, O., Utting, M.: Cogito ergo sum–providing structured theorem prover support for specification formalisms. In: Ramamohanarao, K. (ed.) Proceedings of the Nineteenth Australian computer science conference. Australian Computer Science Communications, vol. 18, pp. 149–158 (1997)Google Scholar
  18. 18.
    Rushby, J., von Henke, F., Owre, S.: An introduction to formal specification and verification using EHDM. Technical Report SRI-CSL-91-02, SRI International (1991)Google Scholar
  19. 19.
    Shoenfield, J.R.: Mathematical Logic. Addison-Wesley, Reading (1967)zbMATHGoogle Scholar
  20. 20.
    Smith, D.: KIDS: A knowledge-based software development system. In: Lowry, M., McCartney, R. (eds.) Automating Software Design, pp. 483–514. MIT Press, Cambridge (1991)Google Scholar
  21. 21.
    Srinivas, Y., Jullig, R.: Specware: Formal support for composing software. In: Proceedings of the Conference on Mathematics of Program Construction (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • William M. Farmer
    • 1
  1. 1.Department of Computing and SoftwareMcMaster UniversityHamiltonCanada

Personalised recommendations