Advertisement

Smart Card Crypto-Coprocessors for Public-Key Cryptography

  • Helena Handschuh
  • Pascal Paillier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1820)

Abstract

This paper intends to provide information about up-to-date performances of smart-card arithmetic coprocessors regarding major public-key cryptosystems and analyze the main tendences of this developing high-tech industry and related markets. We also comment hardware limitations of current technologies and provide a technique for extending them by virtually doubling their capacities.

Keywords

Elliptic Curve Smart Card Signature Scheme Modular Multiplication Modular Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrett, P.: Implementing the rivest shamir and adleman public key encryption algorithm on a standard digital signal processor. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987)Google Scholar
  2. 2.
    de Waleffe, D., Quisquater, J.J.: CORSAIR, A Smart Card for Public-Key Cryptosystems. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 503–513. Springer, Heidelberg (1991)Google Scholar
  3. 3.
    Dhem, J.F.: Design of an Efficient Public-Key Cryptographic Library for RISCbased Smart Cards, PhD Thesis, UCL (1998)Google Scholar
  4. 4.
    Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Transactions on Information Theory IT-22(6), 644–654 (1976)CrossRefMathSciNetGoogle Scholar
  5. 5.
    El-Gamal, T.: A Public-Key Cryptosystem and a Signature Scheme based on Discrete Logarithms. IEEE TIT IT-31(4), 469–472 (1985)MathSciNetGoogle Scholar
  6. 6.
    Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 181–187. Springer, Heidelberg (1987)Google Scholar
  7. 7.
    FIPS PUB 186, Digital Signature Standard (February 1, 1993)Google Scholar
  8. 8.
    Knuth, D.: The Art of Computer Programming. Seminumerical Algorithms 2, 248–250 (1969)Google Scholar
  9. 9.
    Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Advances in Cryptology: Crypto 1985, pp. 417–426. Springer, Heidelberg (1986)Google Scholar
  10. 10.
    Montgomery, P.: Modular Multiplication without Trial Division. Mathematics of Computations 44(170), 519–521 (1985)zbMATHCrossRefGoogle Scholar
  11. 11.
    Naccache, D., M’Raïhi, D.: Arithmetic Coprocessors for Public-Key Cryptography: The State of the Art. IEEE Micro, 14–24 (June 1996)Google Scholar
  12. 12.
    Omura, J.: A Public Key Cell Design for Smart Card Chips. In: IT Workshop, Hawaii, USA, November 27-30, pp. 983–985Google Scholar
  13. 13.
    Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures and Public- Key Cryptosystems. Communications of the ACM 21(2), 120–126 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Schnorr, C.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)Google Scholar
  15. 15.
    Sedlak, H.: The RSA Cryptographic Processor: The First High Speed One-Chip Solution. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 95–105. Springer, Heidelberg (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Helena Handschuh
    • 1
  • Pascal Paillier
    • 2
  1. 1.Cryptography DepartmentGEMPLUSIssy-Les Moulineaux
  2. 2.ENST Computer Science DepartmentParis Cedex 13

Personalised recommendations