Proof Obligations of the B Formal Method: Local Proofs Ensure Global Consistency

  • Mireille Ducassé
  • Laurence Rozé
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1817)


The B formal method has been successfully used in large projects and is not reserved to experts. The main correctness criterion of B is that every piece of code must preserve invariant properties. In this article, we briefly introduce the basic notions of B. We then concentrate on the proof obligations. After introducing them, we show how the sum of local proofs makes a global consistency. We believe that this strong modularity is essential for the tractability of the proofs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abrial, J.-R.: The B Book: Assigning programs to meanings. Cambridge University Press, Cambridge (1996)MATHCrossRefGoogle Scholar
  2. 2.
    Backhouse, R.C.: Program construction and verification. International Series in Computer Science. Prentice Hall, Englewood Cliffs (1986) ISBN : 0-937291-46-3Google Scholar
  3. 3.
    Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Météor: A successful application of B in a large project. In: Wing, J., et al. (eds.) FM 1999, World Congress on Formal Methods in the Development of Computing Systems, September 1999. LNCS, vol. 1708, pp. 369–387. Springer, Heidelberg (1999)Google Scholar
  4. 4.
    Bert, D. (ed.): B 1998: Recent Advances in the Development and Use of the B Method. LNCS, vol. 1393. Springer, Heidelberg (1998)Google Scholar
  5. 5.
    Dijkstra, E.W.: A discipline of programming. Automatic Comptation. Prentice Hall, Englewood Cliffs (1976) ISBN: 0-13-215871-XGoogle Scholar
  6. 6.
    Ducassé, M.: Teaching B at a technical university is possible and rewarding. In: Habrias, H., Dunn, S.E. (eds.) B 1998, Proceedings of the Educational Session (avril 1998) APCB:
  7. 7.
    Floyd, R.W.: Assigning meaning to programs. In: Schwartz, J.T. (ed.) Mathe- matical aspects of computer science: Proc. American Mathematics Soc. symposia, 19th edn., pp. 19–31. American Mathematical Society, Providence RI (1967)Google Scholar
  8. 8.
    Gries, D.: The Science of Programming. Text and Monographs in Computer Science. Springer, Heidelberg (1981)MATHGoogle Scholar
  9. 9.
    He, J., Hoare, C.A.R., Sanders, J.W.: Data refinement refined. In: Robinet, B., Wilhelm, R. (eds.) ESOP 1986. LNCS, vol. 213, pp. 187–196. Springer, Heidelberg (1986)Google Scholar
  10. 10.
    Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the ACM 12(10), 576–580 (1969)MATHCrossRefGoogle Scholar
  11. 11.
    Jones, C.B.: Systematic software development using VDM. International Series in Computer Science. Prentice-Hall, Englewood Cliffs (1986) ISBN : 0-13-880725-6MATHGoogle Scholar
  12. 12.
    Lano, K.: The B Language and Method. Formal Approaches to Computing and Information Technology. Springer, Heidelberg (1996) ISBN 3-540-76033-4Google Scholar
  13. 13.
    Morgan, C.: Programming from specifications, 2nd edn. International Series in Computer Science. Prentice Hall, Englewood Cliffs (1994) ISBN 0-13-123274-6MATHGoogle Scholar
  14. 14.
    Parnas, D.L.: A technique for software module specification with examples. CACM 15(5), 330–336 (1972)Google Scholar
  15. 15.
    Potet, M.-L., Rouzaud, Y.: Composition and refinement in the B-Method. In: Bert [4], pp. 46–65Google Scholar
  16. 16.
    Robinson, K.A.: Introduction to the B method. In Sekerinski, Sere [17], ch. 1, pp. 3–37, ISBN 1-85233-053-8 Google Scholar
  17. 17.
    Sekerinski, E., Sere, K. (eds.): Program development by refinement, Case studies using the B method. Formal Approaches to Computing and Information Technology. Springer, Heidelberg (1999) ISBN 1-85233-053-8MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Mireille Ducassé
    • 1
  • Laurence Rozé
    • 1
  1. 1.IRISA/INSARennes CedexFrance

Personalised recommendations