What is the Expressive Power of Disjunctive Preconditions?

  • Bernhard Nebel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1809)


While there seems to be a general consensus about the expressive power of a number of language features in planning formalisms, one can find many different statements about the expressive power of disjunctive preconditions. Using the “compilability framework,” we show that preconditions in conjunctive normal form add to the expressive power of propositional strips, which confirms a conjecture by Bäckström. Further, we show that preconditions in conjunctive normal form do not add any expressive power once we have conditional effects.


Expressive Power Planning Algorithm Conjunctive Normal Form Planning Formalism Disjunctive Normal Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, C.R., Smith, D.E., Weld, D.S.: Conditional effects in Graphplan. In: Simmons, R., Veloso, M., Smith, S. (eds.) Proceedings of the 4th International Conference on Artificial Intelligence Planning Systems (AIPS 1998), pp. 44–53. AAAI Press, Menlo Park (1998)Google Scholar
  2. 2.
    Bäckström, C.: Expressive equivalence of planning formalisms. Artificial Intelligence 76(1-2), 17–34 (1995)CrossRefGoogle Scholar
  3. 3.
    Bylander, T.: The computational complexity of propositional STRIPS planning. Artificial Intelligence 69(1-2), 165–204 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cadoli, M., Donini, F.M.: A survey on knowledge compilation. AI Communications 10(3,4), 137–150 (1997)Google Scholar
  5. 5.
    Gazen, B.C., Knoblock, C.: Combining the expressiveness of UCPOP with the efficiency of Graphplan. In: Steel and Alami [13], pp. 221–233Google Scholar
  6. 6.
    Kambhampati, S., Parker, E., Lambrecht, E.: Understanding and extending Graphplan. In: Steel and Alami [13], pp. 260–272Google Scholar
  7. 7.
    Karp, R.M., Lipton, R.J.: Turing machines than take advice. L’ Ensignement Mathématique 28, 191–210 (1982)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Kautz, H.A., Selman, B.: Forming concepts for fast inference. In: Proceedings of the 10th National Conference of the American Association for Artificial Intelligence (AAAI 1992), San Jose, CA, pp. 786–793. MIT Press, Cambridge (1992)Google Scholar
  9. 9.
    Köbler, J., Watanabe, O.: New collapse consequences of np having small circuits. SIAM Journal on Computing 28(1), 311–324 (1998)zbMATHCrossRefGoogle Scholar
  10. 10.
    Koehler, J., Nebel, B., Hoffmann, J., Dimopoulos, Y.: Extending planning graphs to an ADL subset. In: Steel and Alami [13], pp. 273–285Google Scholar
  11. 11.
    Nebel, B.: On the compilability and expressive power of propositional planning formalisms. Technical Report 101, Albert-Ludwigs-Universität, Institut für Informatik, Freiburg, Germany (June 1998)Google Scholar
  12. 12.
    Nebel, B.: Compilation schemes: A theoretical tool for assessing the expressive power of planning formalisms. In: Burgard, W., Cremers, A.B., Christaller, T. (eds.) KI 1999: Advances in Artificial Intelligence, Bonn, Germany. Springer, Heidelberg (1999) (to appear)Google Scholar
  13. 13.
    Steel, S., Alami, R. (eds.): ECP 1997. LNCS (LNAI), vol. 1348. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Bernhard Nebel
    • 1
  1. 1.Institut für InformatikAlbert-Ludwigs-UniversitätFreiburgGermany

Personalised recommendations