Advertisement

Automatic Players for Computer Games

  • Werner DePauli-Schimanovich-Göttig
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1798)

Abstract

One of the most important fields of research in computer science is the investigation of intelligent agents for the web which should search in the net for informations. Usually these agents are cooperating and form a working group of “multi agents”. But these groups or different agents can also stay in competition to each other. In both cases we have to model the behavior of the agents; i. e. to program a set of rules (consisting of preconditions and actions) which tells every agent what he has to do.

Keywords

Computer Game Horizon Effect Intelligent Agent Diploma Thesis Large Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banerji, R.: Artificial Intelligence: A Theoretical Approach. North-Holland Publ. Comp., Amsterdam (1980)Google Scholar
  2. Bell, A.G.: Games Playing with Computers. George Allen & Unwin, London (1972)Google Scholar
  3. Berlecamp, E., Conway, J., Guy, A.: Winning Ways (for your mathematical plays), vol. 1 + 2. Academic Press, London (1982)Google Scholar
  4. Buneman, P., Levy, L.: The Towers of Hanoi Problem. Information Proceeding Letters 10, 243–244 (1980)Google Scholar
  5. Butter, S., Payer, K., Pokorny, L., Schimanovich, W.: Minimühle. Konstruktion eines optimalen Spieles für die Zieh- und Sprungphase. Technical Report of the Institute of Statistics and Computer Science, University Vienna (1981)Google Scholar
  6. Casti, J.: Searching for Certainty. What Scientists Can Know About the Future. William Morrow & Comp., N.Y (1990)Google Scholar
  7. Casti, J., DePauli, W.: Kurt Gödel. A mathematical Legend. Perseus Books, Reading (2000)Google Scholar
  8. Cull, P., Ecklund, E.: Towers of Hanoi and Analysis of Algorithms. American Mathematical Monthly 92(6) (June-July 1985)Google Scholar
  9. De Pauli-Schimanovich, W.: Programming Chess & Computer Games (Part I + II). In: Wiener’s Cybernetics: 50 years of evolution. Cybernetics 1999, Extended Abstracts (1999) ISBN-84-8416-950-2Google Scholar
  10. De Pauli-Schimanovich, W.: The Calculus of Winning. In: Yearbook 1999 of the Kurt Gödel Society, TU-Vienna (2000)Google Scholar
  11. Feda, M., Bartl, R.: Pente: 5er-Reihe mit 5-Pärchen-Klau. Technical Report of the Institute of Statistics and Computer Science, University Vienna (1985)Google Scholar
  12. Grob, K.: Ein Automatischer Spieler für Master Mind. Diploma Thesis at the Institute of Statistics and Computer Science, University of Vienna (1978)Google Scholar
  13. Hartmann, G.: Konstruktion der Optimierungsstrategie und Programmierung eines automatischen Spielers für das L-Spiel von Edward de Bono. Diploma Thesis at the Institute for Statistics and Informatics, University of Vienna (1980)Google Scholar
  14. Horacek, H.: Ein Modell des menschlichen Problemlösens an Hand von Schach-Bauern- Endspielen. Dissertation at the Institute for Logistic, University of Vienna (1982)Google Scholar
  15. Jauernik, R.: Entwurf eines heuristischen Spielers für das BEAR-DOG-HUNT-Spiel. Diploma Thesis at the Institute for Statistics and Informatics, University of Vienna (1990)Google Scholar
  16. Kaindl, H., Schimanovich, W.: Catrin, mathematisches Brettspiel für 2 Partner. In: Technical Report Nr.7 at the Institute of Statistics and Computer Science, University of Vienna (1978)Google Scholar
  17. Kaindl, H.: Neue Wege im Computerschach. Dissertation at the Institute for Information Systems, Technical University Vienna (1983)Google Scholar
  18. Laufer, H., Schimanovich, W.: Peggy: Arbeitsweise eines Optimalen Dialogspieles. Technical Report of the Institute of Statistics and Computer Science, University Vienna (1981)Google Scholar
  19. Laufer, H.: SOLITAIRE. Arbeitsweise eines optimalen Dialogspielers. Diploma Thesis at the Institute for Statistics and Informatics, University of Vienna (1982)Google Scholar
  20. Levi, L.: Computer Games. Springer, Heidelberg (1980)Google Scholar
  21. von Neumann, J.: Theorie der Gesellschafts-Spiele. Mathematische Annalen 100 (1928)Google Scholar
  22. von Neumann, J., Morgenstern, O.: Game Theory and Economic Behavior. Princeton University Press, Princeton (1944)Google Scholar
  23. Nielsson, N.: Problem Solving Methods in AI. McGraw-Hill Book Comp., N.Y. (1971)Google Scholar
  24. Nielsson, N.: Principles of AI. Tjoga Publ.Press/Springer Inc., N.Y (1980)Google Scholar
  25. Österreicher, K., Sulzgruber, D., Schimanovich, W.: Tertio en Raya. Konstruktion eines optimalen Spielers. Technical Report of the Institute for Statistics and Computer Science, University of Vienna (1980)Google Scholar
  26. Payer, W.: Ein Optimaler Spieler für die Ovalmühle. Klassifikation der Stellungen und Konstruktion eines optimalen Dialogspielers. Diploma Thesis at the Institute for Statistics and Informatics, University of Vienna (1983)Google Scholar
  27. Pearl, J.: Search and Heuristics. North-Holland Publ. Comp., Amsterdam (1983)Google Scholar
  28. Pearl, J.: Heuristics. Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley Publ. Comp., Reading (1984)Google Scholar
  29. Schimanovich, W.: Der Gewinnkalkül. In: Abstract für den Workshop, Berichte aus Informatik-Instituten (September 1978)Google Scholar
  30. Schimanovich, W.: Prädikatenlogische Theorie zur Behandlung von Positionsspielen. In: Proceedings of the 4th International Wittgenstein Symposium 1979, Hölder-Pichler- Tempsky-Verlag, Vienna (1980)Google Scholar
  31. Schimanovich, W.: Spiele und Intelligenz. In: Wissenschaft Aktuell, Heft 3 (Juni) und Heft 4 (September), Wien (1980)Google Scholar
  32. Schimanovich, W.: An Axiomatic Theory of Winning Mathematical Games. Cybernetics and Systems 12, 1–19 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  33. Schimanovich, W.: An Axiomatic Theory of Winning Mathematical Games and Economic Actions. In: Proceedings of the 5th European Meeting on Cybernetics and System Research 1980. Hemisphere Publishing Corp., N.Y. (1982)Google Scholar
  34. Schimanovich, W.: Relative Problem Solving and the Role of Logic in AI (Invited Lecture of AIMSA, Varna.) Technical Report of the Institute for Statistics and Computer Science, University of Vienna (1984)Google Scholar
  35. Shannon, C.: Programming a Computer for Playing Chess. Phil. Magazine, Band 41, pp. 256–275 (1950)Google Scholar
  36. Slagle, J.: Artificial Intelligence: The Heuristic Programming Approach. McGraw-Hill Book Comp., London (1971)Google Scholar
  37. Slany, W.: Hexi: Happy Perfect Hexagon Player. Technical Report of the Institute for Statistics and Computer Science, University of Vienna (1984)Google Scholar
  38. Thompson, K.: Retrograde Analysis of Certain Endgames. ICCA Journal (September 1986)Google Scholar
  39. Trubel, F., Schibl, A.: Rock em up: Beschreibung des automatischen Spielers und des Programmes samt Lösungs- Algorithmus. Technical Report of the Institute for Statistics and Computer Science, University of Vienna (1982)Google Scholar
  40. Wagner, M., Schimanovich, W.: Laufzeituntersuchung und Optimierung des Schachprogrammes Chess.5. Technical Report of the Institute for Statistics and Computer Science, University of Vienna (1980)Google Scholar
  41. Wiesbauer, W.: Kalah4: Ein optimaler Dialog-Spieler. Diploma Thesis at the Institute for Statistics and Informatics, University of Vienna (1981)Google Scholar
  42. Wiener, N.: Cybernetics. John Wiley, N.Y. (1948)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Werner DePauli-Schimanovich-Göttig
    • 1
  1. 1.Institute for Statistics and Decision SupportUniversity of ViennaVienna

Personalised recommendations