Combining Logic and Optimization in Cutting Plane Theory

  • Alexander Bockmayr
  • Friedrich Eisenbrand
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1794)

Abstract

Cutting planes were introduced in 1958 by Gomory in order to solve integer linear optimization problems. Since then, they have received a lot of interest, not only in mathematical optimization, but also in logic and complexity theory. In this paper, we present some recent results on cutting planes at the interface of logic and optimization. Main emphasis is on the length and the rank of cutting plane proofs based on the Gomory-Chvátal rounding principle.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balas, E.: Disjunctive programming. Annals of Discrete Mathematics 5, 3–51 (1979)MATHCrossRefMathSciNetGoogle Scholar
  2. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed 0-1 programs. Mathematical Programming 58, 295–324 (1993)CrossRefMathSciNetMATHGoogle Scholar
  3. Balas, E., Ceria, S., Cornuéjols, G.: Mixed 0-1 programming by lift-and project in a branch-and-cut framework. Management Science 42(9), 1229–1246 (1996)Google Scholar
  4. Balas, E., Ceria, S., Cornuéjols, G., Natraj, N.R.: Gomory cuts revisited. Operations Research Letters 19 (1996)Google Scholar
  5. Barth, P.: Logic-based 0-1 constraint programming. Operations Research/ Computer Science Interfaces Series. Kluwer, Dordrecht (1996)MATHGoogle Scholar
  6. Barth, P., Bockmayr, A.: Finite domain and cutting plane techniques in CLP(PB). In: Sterling, L. (ed.) Logic Programming. 12th International Conference, ICLP 1995, Kanagawa, Japan, pp. 133–147. MIT Press, Cambridge (1995)Google Scholar
  7. Barth, P., Bockmayr, A.: Modelling 0-1 problems in CLP(PB). In: Practical Application of Constraint Technology, PACT 1996, London, pp. 1–9. The Practical Application Company Ltd. (1996)Google Scholar
  8. Blair, C., Jeroslow, R.G.: A converse for disjunctive constraints. Journal of Optimization Theory and Applications 25, 195–206 (1978)MATHCrossRefMathSciNetGoogle Scholar
  9. Bockmayr, A.: Logic programming with pseudo-Boolean constraints. In: Benhamou, F., Colmerauer, A. (eds.) Constraint Logic Programming. Selected Research, ch. 18, pp. 327–350. MIT Press, Cambridge (1993)Google Scholar
  10. Bockmayr, A.: Solving pseudo-Boolean constraints. In: Podelski, A. (ed.) Constraint Programming: Basics and Trends. LNCS, vol. 910, pp. 22–38. Springer, Heidelberg (1995)Google Scholar
  11. Bockmayr, A., Eisenbrand, F.: Cutting planes and the elementary closure in fixed dimension, Research Report MPI-I-99-2-008, Max-Planck-Institut für Informatik, Im Stadtwald, D-66123 Saarbrücken, Germany (1999)Google Scholar
  12. Bockmayr, A., Eisenbrand, F., Hartmann, M., Schulz, A.S.: On the Chvátal rank of polytopes in the 0/1 cube. Discrete Applied Mathematics 98, 21–27 (1999)Google Scholar
  13. Chandru, V., Hooker, J.N.: Optimization Methods for Logical Inference. Wiley, Chichester (1999)Google Scholar
  14. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Mathematics 4, 305–337 (1973)MATHCrossRefMathSciNetGoogle Scholar
  15. Chvátal, V., Cook, W., Hartmann, M.: On cutting-plane proofs in combinatorial optimization. Linear Algebra and its Applications 114/115, 455–499 (1989)CrossRefGoogle Scholar
  16. Cook, W., Coullard, C.R., Turán, G.: On the complexity of cutting plane proofs. Discrete Applied Mathematics 18, 25–38 (1987)MATHCrossRefMathSciNetGoogle Scholar
  17. Cook, W., Gerards, A.M.H., Schrijver, A., Tardos, E.: Sensitivity theorems in integer linear programming. Mathematical Programming 34, 251–264 (1986)MATHCrossRefMathSciNetGoogle Scholar
  18. Cook, W., Hartmann, M., Kannan, R., McDiarmid, C.: On integer points in polyhedra. Combinatorica 12(1), 27–37 (1992)MATHCrossRefMathSciNetGoogle Scholar
  19. Eisenbrand, F.: On the membership problem for the elementary closure of a polyhedron. Combinatorica 19(2), 297–300 (1999)MATHCrossRefMathSciNetGoogle Scholar
  20. Eisenbrand, F., Schulz, A.S.: Bounds on the Chvátal rank of polytopes in the 0/1 cube. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol. 1610, pp. 137–150. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  21. Gerards, A.M.H.: On cutting planes and matrices. In: Cook, W., Seymour, P.D. (eds.) Polyhedral Combinatorics, DIMACS, pp. 29–32 (1990)Google Scholar
  22. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bull AMS 64, 275–278 (1958)MathSciNetGoogle Scholar
  23. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization. Algorithms and Combinatorics, vol. 2. Springer, Heidelberg (1988)Google Scholar
  24. Haken, A.: The intractability of resolution. Theoretical Computer Science 39, 297–308 (1985)MATHCrossRefMathSciNetGoogle Scholar
  25. Haken, A., Cook, S.A.: An exponential lower bound for the size of monotone real circuits. Journal of Computer and System Sciences 58, 326–335 (1999)Google Scholar
  26. Hayes, A.C., Larman, D.G.: The vertices of the knapsack polytope. Discrete Applied Mathematics 6, 135–138 (1983)MATHCrossRefMathSciNetGoogle Scholar
  27. Hooker, J.N.: Generalized resolution and cutting planes. Annals of Operations Research 12, 217–239 (1988)CrossRefMathSciNetGoogle Scholar
  28. Hooker, J.N.: Generalized resolution for 0-1 linear inequalities. Annals of Mathematics and Artificial Intelligence 6, 271–286 (1992)MATHCrossRefMathSciNetGoogle Scholar
  29. Jeroslow, R.G.: Cutting-plane theory: disjunctive methods. Annals of Discrete Mathematics 1, 293–330 (1977)CrossRefMathSciNetGoogle Scholar
  30. Khachiyan, L.G.: A polynomial algorithm in linear programming. Soviet Math. Doklady 20, 191–194 (1979)MATHGoogle Scholar
  31. Lagarias, J.C.: The computational complexity of simultaneous diophantine approximation problems. SIAM J. Computing 14(1), 196–209 (1985)MATHCrossRefMathSciNetGoogle Scholar
  32. Lenstra, H.W.: Integer programming with a fixed number of variables. Mathematics of Operations Research 8(4), 538–548 (1983)MATHCrossRefMathSciNetGoogle Scholar
  33. Padberg, M.W., Grötschel, M.: Polyhedral Computations. In: Lawler, E.L., Lenstra, J.K., Rinnoy Kan, A., Shmoys, D.B. (eds.) The Traveling Salesman Problem, pp. 307–360. John Wiley & Sons, Chichester (1985)Google Scholar
  34. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computations. Journal of Symbolic Logic 62(3), 981–988 (1997)MATHCrossRefMathSciNetGoogle Scholar
  35. Pudlák, P.: On the complexity of the propositional calculus. In: Sets and Proofs, Invited papers from Logic Colloquium 1997, pp. 197–218. Cambridge Univ. Press, Cambridge (1999)Google Scholar
  36. Razborov, A.A.: Lower bounds on the monotone complexity of some Boolean functions. Soviet Math. Dokl. 31(2), 354–357 (1985)MATHGoogle Scholar
  37. Schrijver, A.: On cutting planes. Annals of Discrete Mathematics 9, 291–296 (1980)MATHCrossRefMathSciNetGoogle Scholar
  38. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley, Chichester (1986)MATHGoogle Scholar
  39. Sherali, H.D., Shetty, C.M.: Optimization with disjunctive constraints. Lecture Notes in Economics and Mathematical Systems, vol. 181. Springer, Heidelberg (1980)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Alexander Bockmayr
    • 1
  • Friedrich Eisenbrand
    • 2
  1. 1.LORIAUniversité Henri PoincaréVandœvre-lès-NancyFrance
  2. 2.Max-Planck-Institut für InformatikIm StadtwaldSaarbrückenGermany

Personalised recommendations