Comparison of Conceptual Graphs

  • Manuel Montes-y-Gómez
  • Alexander Gelbukh
  • Aurelio López-López
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1793)

Abstract

In intelligent knowledge-based systems, the task of approximate matching of knowledge elements has crucial importance. We present the algorithm of comparison of knowledge elements represented with conceptual graphs. The method is based on well-known strategies of text comparison, such as Dice coefficient, with new elements introduced due to the bipartite nature of the conceptual graphs. Examples of comparison of two pieces of knowledge are presented. The method can be used in both semantic processing in natural language interfaces and for reasoning with approximate associations.

Keywords

conceptual graphs approximate matching knowledge representation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ellis, G., Lehmann, F.: Exploiting the Induced Order on Type-Labeled Graphs for fast Knowledge Retrieval. In: Tepfenhart, W.M., Dick, J.P., Sowa, J.F. (eds.) ICCS 1994. LNCS, vol. 835. Springer, Heidelberg (1994)Google Scholar
  2. Feldman, R., Fresko, M., Kinar, Y., Lindell, Y., Liphstat, O., Rajman, M., Schler, Y., Zamir, O.: Text Mining at the Term Level. In: Proc. of the 2nd European Symposium on Principles of Data Mining and Knowledge Discovery (PKDD 1998), Nantes, France, September 23-26 (1998)Google Scholar
  3. Genest, D., Chein, M.: An Experiment in Document Retrieval Using Conceptual Graphs. In: Delugach, H.S., Keeler, M.A., Searle, L., Lukose, D., Sowa, J.F. (eds.) ICCS 1997. LNCS, vol. 1257. Springer, Heidelberg (1997)Google Scholar
  4. Huibers, T., Ounis, I., Chevallet, J.: Conceptual Graph Aboutness. In: Elkland, P.W., Ellis, G., Mann, G. (eds.) Conceptual Structures: Knowledge Representation as Interlingua. LNCS (LNAI). Springer, Heidelberg (1996)Google Scholar
  5. lópez-lópez, A., Myaeng Sung, H.: Extending the capabilities of retrieval systems by a two level representation of content. In: Proceedings of the 1st Australian Document Computing Symposium (1996)Google Scholar
  6. Montes-Y-Gómez, M., López-López, A., Gelbukh, A.: Document Title Patterns in Information Retrieval. In: Proc. of the Workshop on Text, Speech and Dialogue TDS 1999, Plzen, Czech Republic, September 1999. LNCS (LNAI). Springer, Heidelberg (1999)Google Scholar
  7. Myaeng, S.H.: Conceptual Graph Matching as a Plausible Inference Technique for Text Retrieval. In: Proc. of the 5th Conceptual Structures Workshop, held in conjunction with AAAI 1990, Boston, Ma (1990)Google Scholar
  8. Myaeng, S.H., López-López, A.: Conceptual Graph Matching: a flexible algorithm and experiments. Journal of Experimental and Theoretical Artificial Intelligence 4, 107–126 (1992)CrossRefGoogle Scholar
  9. Rasmussen, E.: Clustering Algorithms. In: Frakes, W.B., Baeza-Yates, R. (eds.) Information Retrieval: Data Structures & Algorithms. Prentice Hall, Englewood Cliffs (1992)Google Scholar
  10. Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading (1983)Google Scholar
  11. Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. In: Preliminary edition ICCS 1994 (August 1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Manuel Montes-y-Gómez
    • 1
  • Alexander Gelbukh
    • 1
  • Aurelio López-López
    • 2
  1. 1.Center for Computing Research (CIC)National Polytechnic Institute (IPN)Mexico D.F.Mexico
  2. 2.INAOE, ElectronicsTonantzintla, PueblaMéxico

Personalised recommendations