Cooperative Simulated Annealing for Path Planning in Multi-robot Systems

  • Gildardo Sánchez-Ante
  • Fernando Ramos
  • Juan Frausto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1793)


This paper presents some preliminary results on the application of a Cooperative Simulated Annealing algorithm (COSA) for solving the problem of path planning in Multi-Robot systems. The main idea is to generate paths for each robot in the system without taking care of the other robots, and then coordinate the paths for all the robots. Paths are generated using a variation of the probabilistic roadmaps (PRM), and the coordination of the paths is achieved with a Cooperative Simulated Annealing (COSA). To evaluate the system, several experiments for environments constituted by two planar robots with up to five dof and various convex obstacles were run. The results obtained aim to continue working on this line.


Path Planning Static Obstacle Path Planning Problem Convex Obstacle Hybrid Local Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barraquand, J., Latombe, J.-C.: Robot Motion Planning: A Distributed Representation Approach. Int. Journal Robotics Research 10(6), 628–649 (1991)CrossRefGoogle Scholar
  2. 2.
    Barraquand, J., Langlois, B., Latombe, J.-C.: Numerical Potential Field Techniques for Robot Path Planning. IEEE Trans. on Systems, Man and Cybernetics 22(2), 224–241 (1992)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Erdmann, M., Lozano-Pérez, R.: On Multiple Moving Objects. IEEE Int. Conf. Robot. Automat., 1419–1424 (1986)Google Scholar
  4. 4.
    Hsu, D., Latombe, J.-C., Motwani, R.: Path Planning in Expansive Configuration Spaces. In: Proc. IEEE Int. Conf. On Robotics and Automation (1997)Google Scholar
  5. 5.
    O’Donnell, P.A., Lozano-Perez, T.: Deadlock-Free and Collision-Free Coordination of Two Robot Manipulators. IEEE Int. Conf. Robot. Automat., 484–489 (1989)Google Scholar
  6. 6.
    Schwartz, J.T., Sharir, M.: On the Piano Movers’ Problem I: The Case of a Two-Dimensional Rigid Polygonal Body Moving Amidst Polygonal Barriers Communications. Pure and Applied Mathematics 36, 345–398 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Schwartz, J.T., Sharir, M.: On the Piano Movers’ Problem II: General Techniques for Computing Topological Properties of Real Algebraic Manifolds Advances in Applied Mathematics.  4, 298–351 (1983)Google Scholar
  8. 8.
    Wendt, O.: COSA: Cooperative Simulated Annealing, Tech. Rep. Number 94-09, Universitaet Frankfurt (1994)Google Scholar
  9. 9.
    Wendt, O.: Naturanaloge Verfahren Zur Approximativen Lösung Kombinatori- scher Optimierungsprobleme Universität Frankfurt (1995)Google Scholar
  10. 10.
    Cerny, V.: Thermodynamical Approach to the Traveling Salesman Problem: An Efficient Simulation Algorithm. Journal of Optimization Theory and Applications 45(1), 41–51 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing.  2220, 671–680 (1983)Google Scholar
  12. 12.
    Ramos, F., Gomez, G., Sanchez-Ante, G.: Cooperative randomized methods for planning motions in mono and multiple robotic systems. In: Proc. Primer Congreso de Robótica, Asociación Mexicana de Robótica (1999)Google Scholar
  13. 13.
    Héctor, A.: Montes Planićación de trayectorias para múltiples robots manipulado- res usando algoritmos genéticos Tesis de Maestria, ITESM Campus Morelos (1999)Google Scholar
  14. 14.
    de la Cueva, V., Ramos, F.: Cooperative Genetic Algorithms: A New Approach to Solve the Path Planning Problem for Cooperative Robotic Manipulators Sharing the Same Workspace. In: Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, Victoria, B.C. Canada, vol. 1, pp. 267–272 (October 1998)Google Scholar
  15. 15.
    Sanchez-Ante, G., Ramos, F., Frausto, J.: Locally Optimal Path Planning by using Probabilistic Roadmaps and Simulated Annealing. In: Proc. IASTED Robotics and Applications International Conference, Santa Barbara, CA (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Gildardo Sánchez-Ante
    • 1
  • Fernando Ramos
    • 1
  • Juan Frausto
    • 1
  1. 1.Department of Computer ScienceITESMCuernavacaMexico

Personalised recommendations