Advertisement

Self-Escrowed Public-Key Infrastructures

  • Pascal Paillier
  • Moti Yung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1787)

Abstract

This paper introduces a cryptographic paradigm called self-escrowed encryption, a concept initiated by kleptography. In simple words, a self-escrowed public-key cryptosystem features the property that the scheme’s public and private keys are connected to each other by the mean of an other cryptosystem, called the master scheme. We apply this notion to the design of auto-recoverable auto-certifiable cryptosystems, a solution to software key escrow due to Young and Yung, and provide a new cryptographic escrow system called self-escrowed public key infrastructure. In addition, we give an example of such a system based on ElGamal and Paillier encryption schemes which achieves a high level of both efficiency and security.

Keywords

Encryption Scheme Discrete Logarithm Semantic Security ElGamal Encryption Master Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Camenisch, J., Michels, M.: Separability and Efficiency for Generic Group Signature Schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 413–430. Springer, Heidelberg (1999)Google Scholar
  2. 2.
    Chan, A., Frankel, Y., Tsiounis, Y.: Easy Come-Easy Go Divisible Cash. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 561–575. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Diffe, W., Hellman, M.: New Directions in Cryptography. IEEE Transactions on Information Theory IT-22(6), 644–654 (1976)Google Scholar
  4. 4.
    Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solution to Identification and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  5. 5.
    Frankel, Y., Yung, M.: Escrow Encryption Systems Visited: Attacks, Analysis and Designs. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 222–235. Springer, Heidelberg (1995)Google Scholar
  6. 6.
    Fujisaki, E., Okamoto, T.: Statistical Zero-knowledge Protocols to Prove Modular Polynomial Relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)Google Scholar
  7. 7.
    ElGamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. IEEE Transactions on Information Theory IT-31(4), 469–472 (1985)Google Scholar
  8. 8.
    Killian, J., Leighton, F.T.: Fair Cryptosystems, Revisited - A Rigorous Approach to Key Escrow. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 208–221. Springer, Heidelberg (1995)Google Scholar
  9. 9.
    Knudsen, L.R., Robshaw, M.J.B., Wagner, D.: Truncated Differentials and Skipjack. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 165–180. Springer, Heidelberg (1999)Google Scholar
  10. 10.
    Paillier, P.: Public-Key Cryptosystems Based on Composite-Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  11. 11.
    Stadler, M.: Publicly Verifiable Secret Sharing. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996)Google Scholar
  12. 12.
    Young, A., Yung, M.: The Dark Side of Black-Box Cryptography. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 89–103. Springer, Heidelberg (1996)Google Scholar
  13. 13.
    Young, A., Yung, M.: Kleptography: Using Cryptography against Cryptography. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74. Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Young, A., Yung, M.: The Prevalence of Kleptographic Attacks on Discrete- Log Based Cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 264–276. Springer, Heidelberg (1997)Google Scholar
  15. 15.
    Young, A., Yung, M.: Auto-Recoverable Auto-Certifiable Cryptosystems. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 17–31. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Young, A., Yung, M.: Auto-Recoverable Cryptosystems with Faster Initialization and the Escrow Hierarchy. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Pascal Paillier
    • 1
  • Moti Yung
    • 2
  1. 1.Cryptography Group, Gemplus 
  2. 2.CertCo New York 

Personalised recommendations