Advertisement

Subresultants Revisited

Extended Abstract
  • Joachim von zur Gathen
  • Thomas Lücking
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1776)

Abstract

The Euclidean Algorithm was first documented by Euclid (320–275 BC). Knuth (1981), p. 318, writes: “We might call it the granddaddy of all algorithms, because it is the oldest nontrivial algorithm that has survived to the present day.” It performs division with remainder repeatedly until the remainder becomes zero.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bézout, É.: Recherches sur le degré des équations résultantes de l’évanouissement des inconnues. Histoire de l’académie royale des sciences Summary 88–91, 288–338 (1764)Google Scholar
  2. Biermann, O.: Über die Resultante ganzer Functionen. Monatshefte fuer Mathematik und Physik, II. Jahrgang, 143–146 (1891)Google Scholar
  3. Brown, W.S.: On Euclid’s Algorithm and the Computation of Polynomial Greatest Common Divisors. Journal of the ACM 18(4), 478–504 (1971)zbMATHCrossRefGoogle Scholar
  4. Brown, W.S.: The Subresultant PRS Algorithm. ACM Transactions on Mathematical Software 4(3), 237–249 (1978)zbMATHCrossRefGoogle Scholar
  5. Brown, W.S., Traub, J.F.: On Euclid’s Algorithm and the Theory of Subresultants. Journal of the ACM 18(4), 505–514 (1971)zbMATHCrossRefMathSciNetGoogle Scholar
  6. Collins, G.E.: Polynomial remainder sequences and determinants. The American Mathematical Monthly 73, 708–712 (1966)zbMATHCrossRefMathSciNetGoogle Scholar
  7. Collins, G.E.: Subresultants and Reduced Polynomial Remainder Sequences. Journal of the ACM 14(1), 128–142 (1967)zbMATHCrossRefGoogle Scholar
  8. Collins, G.E.: The Calculation of Multivariate Polynomial Resultants. Journal of the ACM 18(4), 515–532 (1971)zbMATHCrossRefGoogle Scholar
  9. Collins, G.E.: Computer algebra of polynomials and rational functions. The American Mathematical Monthly 80, 725–755 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  10. Cooperman, G., Feisel, S., von, J.: Gcd of many integers. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 310–317. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. Euler, L.: Démonstration sur le nombre des points où deux lignes des ordres quelconques peuvent se couper. Mémoires de l’Académie des Sciences de Berlin 4, 234–248 (1748), 1750; Eneström 148. Opera Omnia, ser. 1,  26, Orell Füssli, Zürich, 46–59 (1953)Google Scholar
  12. von zur Gathen, J.: Parallel algorithms for algebraic problems. SIAM Journal on Computing 13(4), 802–824 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  13. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  14. Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer Academic Publishers, Dordrecht (1992)zbMATHCrossRefGoogle Scholar
  15. Gordan, P.: Vorlesungen über Invariantentheorie. In: Erster Band: Determinanten. B. G. Teubner, Leipzig (1885); Herausgegeben von Georg KerschensteinerGoogle Scholar
  16. Habicht, W.: Eine Verallgemeinerung des Sturmschen Wurzelzählverfahrens. Commentarii Mathematici Helvetici 21, 99–116 (1948)zbMATHCrossRefMathSciNetGoogle Scholar
  17. Haskell, M.W.: Note on resultants. Bulletin of the New York Mathematical Society 1, 223–224 (1892)CrossRefMathSciNetGoogle Scholar
  18. Hungerford, T.W.: Abstract Algebra: An Introduction. Saunders College Publishing, Philadelphia (1990)Google Scholar
  19. Jacobi, C.G.J.: De eliminatione variabilis e duabus aequationibus algebraicis. Journal für die Reine und Angewandte Mathematik 15, 101–124 (1836)Google Scholar
  20. Knuth, D.E.: The Art of Computer Programming, 2nd edn. Seminumerical Algorithms. Addison-Wesley, Reading (1981)zbMATHGoogle Scholar
  21. Kronecker, L.: Die verschiedenen Sturmschen Reihen und ihre gegenseitigen Beziehungen. Monatsberichte der Königlich Preussischen Akademie der Wissenschaften, Berlin, pp. 117–154 (1873)Google Scholar
  22. L. Kronecker, Zur Theorie der Elimination einer Variabeln aus zwei algebraischen Gleichungen. Monatsberichte der K öniglich Preussischen Akademie der Wissenschaften, Berlin, pp. 535–600 (1881); Werke, Zweiter Band, ed. K. Hensel, Leipzig, pp. 113–192 (1897). Reprint by Chelsea Publishing Co., New York, (1968) Google Scholar
  23. Lickteig, T., Roy, M.-F.: Cauchy Index Computation. Calcolo 33, 331–357 (1997)MathSciNetGoogle Scholar
  24. Loos, R.: Generalized Polynomial Remainder Sequences. Computing 4, 115–137 (1982)Google Scholar
  25. Mulders, T.: A note on subresultants and the Lazard/Rioboo/Trager formula in rational function integration. Journal of Symbolic Computation 24(1), 45–50 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  26. Newton, I.: Arithmetica Universalis, sive de compositione et resolutione arithmetica liber. J. Senex, London (1707); English translation as Universal Arithmetick: or, A Treatise on Arithmetical composition and Resolution, translated by the late Mr. Raphson and revised and corrected by Mr. Cunn, London (1728). Reprinted in: Whiteside, D. T., The mathematical works of Isaac Newton, Johnson Reprint Co, New York, p. 4 (1967)Google Scholar
  27. Reischert, D.: Asymptotically Fast Computation of Subresultants. In: Maui, H.I., Küchlin, W.W. (eds.) Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation ISSAC 1997, pp. 233–240. ACM Press, New York (1997)CrossRefGoogle Scholar
  28. Strassen, V.: The computational complexity of continued fractions. SIAM Journal on Computing 12(1), 1–27 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  29. Sturm, C.: Mémoire sur la résolution des équations numériques. Mémoires présentés par divers savants à l’Académie des Sciences de l’Institut de France 6, 273–318 (1835)Google Scholar
  30. Sylvester, J.J.: A method of determining by mere inspection the derivatives from two equations of any degree. Philosophical Magazine 16, 132–135 (1840); Mathematical Papers 1, pp. 54–57. Chelsea Publishing Co., New York (1973)Google Scholar
  31. Zippel, R.: Effective polynomial computation. Kluwer Academic Publishers, Dordrecht (1993)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Joachim von zur Gathen
    • 1
  • Thomas Lücking
    • 1
  1. 1.FB Mathematik-InformatikUniversität PaderbornPaderbornGermany

Personalised recommendations