A Stochastic Approach to Content Adaptive Digital Image Watermarking

  • Sviatoslav Voloshynovskiy
  • Alexander Herrigel
  • Nazanin Baumgaertner
  • Thierry Pun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1768)


This paper presents a new stochastic approach which can be applied with different watermark techniques. The approach is based on the computation of a Noise Visibility Function (NVF) that characterizes the local image properties, identifying textured and edge regions where the mark should be more strongly embedded. We present precise formulas for the NVF which enable a fast computation during the watermark encoding and decoding process. In order to determine the optimal NVF, we first consider the watermark as noise. Using a classical MAP image denoising approach, we show how to estimate the ”noise”. This leads to a general formulation for a texture masking function, that allows us to determine the optimal watermark locations and strength for the watermark embedding stage. We examine two such NVFs, based on either a non-stationary Gaussian model of the image, or a stationary Generalized Gaussian model. We show that the problem of the watermark estimation is equivalent to image denoising and derive content adaptive criteria. Results show that watermark visibility is noticeably decreased, while at the same time enhancing the energy of the watermark.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kutter, M.: Watermarking Resisting to Translation, Rotation and Scaling. In: Proc. of SPIE, Boston, USA (November 1998)Google Scholar
  2. 2.
    Kutter, M., Petitcolas, F.: A fair benchmark for image watermarking systems. In: SPIE, San Jose, January 1999, vol. 3657, pp. 226–239 (1999)Google Scholar
  3. 3.
    Ruanaidh, J., Pun, T.: Rotation, Scale and Translation Invariant Spread Spectrum Digital Image Watermarking. Signal Processing 66(3), 303–317 (1998)MATHCrossRefGoogle Scholar
  4. 4.
    Swanson, M., Zhu, B., Twefik, A.: Transparent Robust Image Watermarking. In: Proc. of 3rd IEEE International Conference on Image Processing ICIP 1996, vol. 3, pp. 211–214 (1996)Google Scholar
  5. 5.
    Podilchuk, C., Zeng, W.: Image Adaptive Watermarking Using Visual Models. IEEE Journal on Selected Areas in Communication 16(4), 525–539 (1998)CrossRefGoogle Scholar
  6. 6.
    Huang, J., Shi, Y.: Adaptive Image Watermarking Scheme Based on Visual Masking. Electronic Letters 34(8), 748–750 (1998)CrossRefGoogle Scholar
  7. 7.
    Jayant, N., Johnston, J., Safranek, R.: Signal Compression Based on Models of Human Perception. Proc. of the IEEE,  81(10), 385–1422 (1993)Google Scholar
  8. 8.
    Kankanhalli, M., Ramakrishnan, R.: Content Based Watermarking of Images. In: ACM Mulimedia 1998, Bristol, UK, pp. 61–70 (1998)Google Scholar
  9. 9.
    Bartolini, F., Barni, M., Cappelini, V., Piva, A.: Mask Bilding for Perceptually Hiding Frequency Embedded Watermarks. In: Proc. of 5th IEEE International Conference on Image Processing ICIP 1998, Chicago, Illinois, USA, October 4-7, vol. 1, pp. 450–454 (1998)Google Scholar
  10. 10.
    Delaigle, J.F., De Vleeschouwer, C., Macq, B.: Watermarking Algorithm Based on a Human Visual Model. Signal Processing 66, 319–335 (1998)MATHCrossRefGoogle Scholar
  11. 11.
    Cox, I., Kilian, J., Leighton, T., Shamoon, T.: Secure Spread Spectrum Watermarking for Multimedia, NEC Research Institute Tech. Rep. 95-10, 213 (1995)Google Scholar
  12. 12.
    Marvel, L., Retter, C., Boncelet, C.: Hiding Information in Images. In: Proc. of 5th IEEE International Conference on Image Processing ICIP 1998, Chicago, Illinois, USA, October 4-7, vol. 1 (1998)Google Scholar
  13. 13.
    Geman, S., Geman, D.: Stochastic Relaxation, Gibbs Distributions and the Bayesian Restorations of Images. IEEE Trans. on Pattern Analysis and Machine Intelligence 14(6), 367–383 (1984)Google Scholar
  14. 14.
    Moulin, P., Liu, J.: Analysis of Multiresolution Image Denoising Schemes Using Generalized-Gaussian Priors. In: Proc. IEEE Sig. Proc. Symp. on Time-Frequency and Time-Scale Analysis, Pittsburgh, PA (October 1998)Google Scholar
  15. 15.
    Chang, S., Yu, B., Vetterli, M.: Spatially Adaptive Wavelet Thresholding with Content Modeling for Image Denoising. In: Proc. of 5th IEEE International Conference on Image Processing ICIP 1998, Chicago, Illinois, USA, October 4-7 (1998)Google Scholar
  16. 16.
    LoPresto, S., Ramchandran, K., Orhard, M.: Image Coding Based on Mixture Modeling of Wavelet Coefficients and a Fast Estimation-Quantization Framework. In: Data Compression Conference 1997, Snowbird, Utah, pp. 221–230 (1997)Google Scholar
  17. 17.
    Mallat, S.: A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Trans. on Pattern Analysis and Machine Intelligence 11(7), 674–693 (1989)MATHCrossRefGoogle Scholar
  18. 18.
    Lim, J.S.: Two-Dimensional Signal and Image Processing. Prentice-Hall, Englewood Cliffs (1990)Google Scholar
  19. 19.
    Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press, Cambridge (1987)Google Scholar
  20. 20.
    Deiger, D., Girosi, F.: Parallel and Deterministic Algorithms from MRFs Surface Reconstruction. IEEE Trans. on Pattern Analysis and Machine Intelligence 13(6), 401–412 (1991)Google Scholar
  21. 21.
    Charbonnier, P., Blanc-Feraud, L., Aubert, G., Barlaud, M.: Deterministic Edge-Preserving Regularization in Computed Images. IEEE Trans. on Image Processing 6(2), 298–311 (1997)CrossRefGoogle Scholar
  22. 22.
    Dalaney, A., Bresler, Y.: Globally Convergent Edge-Preserving Regularization: An Application to Limited-Angle Tomography. IEEE Trans. on Image Processing 7(2), 204–221 (1998)CrossRefGoogle Scholar
  23. 23.
    Nikolova, M.: Estimees Locales Forment Homogenes. Comptes Rendus Ac. Sci. Paris, Serie I 325, 665–670 (1997)MATHMathSciNetGoogle Scholar
  24. 24.
    Adelson, G.L., Natravali, A.N.: Image Restoration Based on Subjective Criterion. IEEE Trans. Syst., Man, Cyber. SMC-6, 845–853 (1976)Google Scholar
  25. 25.
    Efstratiadis, S., Katsaggelos, A.: Adaptive Iterative Image Restoration with Reduced Computational Load. Optical Engineering 29(12), 1458–1468 (1990)CrossRefGoogle Scholar
  26. 26.
    Watson, A.: DCT Quantization Matrices Visually Optimized for Individual Images. In: Proc. SPIE Conf. Human Vision, Visual Processing and Digital Display IV, vol. 1913, pp. 202–216 (1993)Google Scholar
  27. 27.
    Watson, A., Yang, G., Solomon, J., Villasenor, J.: Visual Thresholds for Wavelet Quantization Error. In: Proc. SPIE Human Vision and Electronic Imaging, vol. 2657, pp. 381–392 (1996)Google Scholar
  28. 28.
    Lewis, A.S., Knowles, G.: Image Compression Using 2-D Wavelet Transform. IEEE Trans. Image Processing 4, 244–250 (1992)CrossRefGoogle Scholar
  29. 29.
    Pereira, S., Ruanaidh, J., Deguillaume, F., Cscurka, G., Pun, T.: Template Based Recovery of Fourier-Based Watermarks Using Log-Polar and Log-Log Maps. In: Proc. Int. Conference on Multimedia Computing and Systems (June 1999)Google Scholar
  30. 30.
    Prudyus, I., Voloshynovskiy, S., Holotyak, T.: Adaptive Aperture Formation in Radar Imaging Systems with Nonlinear Robust Image Restoration. In: IX European Signal Processing Conference Eusipco-1998, Island of Rhodes, Greece, September 8-11, vol. 3, pp. 1365–1368 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Sviatoslav Voloshynovskiy
    • 1
  • Alexander Herrigel
    • 2
  • Nazanin Baumgaertner
    • 2
  • Thierry Pun
    • 1
  1. 1.Department of Computer ScienceCUI - University of GenevaGeneva 4Switzerland
  2. 2.DCT – Digital Copyright Technologies, Research & DevelopmentZurichSwitzerland

Personalised recommendations