Optimum Decoding of Non-additive Full Frame DFT Watermarks

  • Alessia De Rosa
  • Mauro Barni
  • Franco Bartolini
  • Vito Cappellini
  • Alessandro Piva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1768)


The problem of optimum watermark recovery in a non additive, non Gaussian framework is addressed. Watermark casting is carried out on the frequency domain according to an additive-multiplicative rule. The structure of the optimum decoder is derived based on statistical decision theory. The Neyman-Pearson criterion is used to minimize the probability of missing the watermark for a given false detection rate. Experimental results highlights the superiority of the novel detector scheme with respect to conventional correlation-based decoding.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Elmasry, G.F., Shi, Y.Q.: Maximum likelihood sequence decoding of digital image watermarking. In: Proc. SPIE’s Int. Symposium on Optical Science, Engineering and Instrumentation, San Jose, CA, USA, January 25-27, pp. 425–436 (1999)Google Scholar
  2. 2.
    Gonzalez, F.P., Hernandez, J.R.: Throwing more light on image watermarks. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 191–207 (1998)Google Scholar
  3. 3.
    Cox, I., Kilian, J., Leighton, F.T., Shamoon, T.: Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Processing 6(12), 1673–1687 (1997)CrossRefGoogle Scholar
  4. 4.
    Barni, M., Bartolini, F., Cappellini, V., Piva, A.: A DCT-domain system for robust image watermarking. Signal Processing 66(3), 357–372 (1998)MATHCrossRefGoogle Scholar
  5. 5.
    Barni, M., Bartolini, F., Cappellini, V., Piva, A.: Copyright protection of digital images by embedded umperceivable marks. Image and Vision Computing (1998)Google Scholar
  6. 6.
    Ó Ruanaidh, J.J.K., Pun, T.: Rotation, scale and translation invariant spread spectrum digital image watermarking. Signal Processing 66(3), 303–317 (1998)MATHCrossRefGoogle Scholar
  7. 7.
    Bartolini, F., Barni, M., Cappellini, V., Piva, A.: Mask building for perceptually hiding frequency embedded watermarks. In: Proc. IEEE Internat. Conf. Image Processing 1998, Chicago, Illinois, USA, October 4-7 (1998)Google Scholar
  8. 8.
    Scharf, L.L.: Statistical Signal Processing: Detection, Estimation, and Time Series Analysis. Addison-Wesley, Reading (1991)MATHGoogle Scholar
  9. 9.
    Di Franco, J.V., Rubin, W.L.: Radar Detection. Artech House, Inc., Dedham (1980)Google Scholar
  10. 10.
    Piva, A., Barni, M., Bartolini, F., Cappellini, V.: Threshold selection for correlation-based watermark detection. In: Proc. COST 254 Workshop on Intelligent Communications, L’Aquila, Italy, June 4-6, pp. 67–72 (1998)Google Scholar
  11. 11.
    Piva, A., Barni, M., Bartolini, F., Cappellini, V.: Dct-based watermark recovering without resorting to the uncorrupted original image. In: Proc. IEEE Internat. Conf. Image processing 1997, Santa Barbara, CA, October 26-29, pp. 520–523 (1997)Google Scholar
  12. 12.
    Petitcolas, F.A.P.: Weakness of existing watermarking schemes (1999) http://www.cl.cam.ac.uk/fapp2/watermarking/stirmark/index.html
  13. 13.
    Kuhn, M.G., Petitcolas, F.A.P., Anderson, R.J.: Attacks on copyright marking systems. In: Aucsmith, D. (ed.) Proc. Information Hiding, Second International Workshop, Portland, Oregon, USA, April 15-17, pp. 219–239 (1998)Google Scholar
  14. 14.
    Petitcolas, F.A.P., Anderson, R.J.: Evaluation of copyright marking systems. In: IEEE Multimedia Systems (ICMCS 1999), Florence, Italy, June 7-11, pp. 574–579 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Alessia De Rosa
    • 1
  • Mauro Barni
    • 2
  • Franco Bartolini
    • 1
  • Vito Cappellini
    • 1
  • Alessandro Piva
    • 1
  1. 1.Department of Electronic EngineeringUniversity of FlorenceFlorenceItaly
  2. 2.Department of Information EngineeringUniversity of SienaSienaItaly

Personalised recommendations