Computing the Probability of False Watermark Detection

  • Matt L. Miller
  • Jeffrey A. Bloom
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1768)


Several methods of watermark detection involve computing a vector from some input media, computing the normalized correlation between that vector and a predefined watermark vector, and comparing the result against a threshold. We show that, if the probability density function of vectors that arise from random, unwatermarked media is a zero-mean, spherical Gaussian, then the probability that such a detector will give a false detection is given exactly by a simple ratio of two definite integrals. This expression depends only on the detection threshold and the dimensionality of the watermark vector.


Normalize Correlation Image Watermark False Detection Data Hiding Detection Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cox, I.J., Miller, M., Linnartz, J.-P., Kalker, T.: A review of watermarking principles and practices. In: Parhi, K.K., Nishitani, T. (eds.) Digital Signal Processing for Multimedia Systems, ch.17. Marcel Dekker, Inc., New York (1999)Google Scholar
  2. 2.
    Bloom, J.A., Cox, I.J., Kalker, T., Linnartz, J.-P., Miller, M.L., Traw, B.: Copy protection for DVD video. Proceedings of the IEEE Special Issue on Identification and Protection of Multimedia Information 87, 1267–1276 (1999)Google Scholar
  3. 3.
    Secure digital music initiative,
  4. 4.
    Linnartz, J.-P., Kalker, T., Depovere, G.: Modelling the false alarm and missed detection rate for electronic watermarks. In: Proc. Second International Workshop on Information Hiding, pp. 329–343 (1998)Google Scholar
  5. 5.
    Hernández, J.R., Pérez-González, F.: Shedding more light on image watermarks. In: Aucsmith, D. (ed.) Information Hiding 1998, pp. 191–207. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Stone, H.S.: Analysis of attacks on image watermarks with randomized coefficients. Tech. Rep. 96-045, NEC Research Institute, Princeton, NJ (1996)Google Scholar
  7. 7.
    McKellips, A.: Watermark detection false positive analysis. Signafy Technical Report, TR-118 (1997)Google Scholar
  8. 8.
    Rhoads, G.B.: Imageste ganography system featuring perceptually adaptive and globally scalable signal embedding. U S Patent 5, 748–763 (1998)Google Scholar
  9. 9.
    Cox, I.J., Kilian, J., Leighton, T., Shamoon, T.: Secure spread spectrum water-marking for multimedia. IEEE Trans. Image Proc. 6(12), 1673–1687 (1997)CrossRefGoogle Scholar
  10. 10.
    Podilchuk, C.I., Zeng, W.: Image-adaptive watermarking using visual models. IEEE Trans. on Selected Areas of Communications 16(4), 525–539 (1998)CrossRefGoogle Scholar
  11. 11.
    O’Ruanaidh, J.J.K., Dowling, W.J., Boland, F.: Phase watermarking of digital images. In: Proc. ICIP 1996, pp. 239–242 (1996)Google Scholar
  12. 12.
    Kalker, T., Depovere, G., Haitsma, J., Maes, M.: Avideowater-marking system for broadcast monitoring. In: Proc. SPIE, 3657 Security and Water-marking of Multimedia Contents, pp. 103–112 (1999)Google Scholar
  13. 13.
    Cox, I.J., Tanaka, K.: NEC data hiding proposal. Technical report, NEC Copy ProtectionTechnical Working Group. Responsetocallforproposalissuedbythe Data Hiding SubGroup (July 1997), Available at
  14. 14.
    Cox, I.J., Miller, M.L., Tanaka, K., Wakasu: Digitalwater-marking. U S Patent filed 5 (1996)Google Scholar
  15. 15.
    Preuss, R.D., Roukos, S.E., Huggins, A.W.F., Gish, H., Bergamo, M.A., Peterson, P.M., D.A.G. Embeddedsignalling. U S Patent 5,319,735 (1994)Google Scholar
  16. 16.
    Depovere, G., Kalker, T., Linnartz, J.-P.: Improvedwatermarkdetection reliability using filtering before correlation. In: Proc. ICIP 1998, pp. 430–434 (1998)Google Scholar
  17. 17.
    Swanson, M.D., Zhu, B., Tewfik, A.H.: Transparent robust image watermarking. In: Proc. ICIP 1996, pp. 211–214 (1996)Google Scholar
  18. 18.
    Cox, I.J., Miller, M.L., McKellips, A.L.: Watermarkingas communications with side information. Proceedings of the IEEE Special Issue on Identification and Protection of Multimedia Information 87, 1127–1141 (1999)Google Scholar
  19. 19.
    Brunk, H.D.: An i ntroduction to mathematical statistics. Ginn and Company (1960)Google Scholar
  20. 20.
    Smith, W.D.: Studies in computational geometry motivated by mesh generation. Ph.D. Thesis, Applied Mathematics, Princeton University (1988)Google Scholar
  21. 21.
    Ahrens, J.H., Dieter, U.: Extensions of Forsythe’s method for random sampling fromthenormaldistribution. Math. Comput. 27, 927–937 (1973)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Matt L. Miller
    • 1
  • Jeffrey A. Bloom
    • 1
  1. 1.Signafy, Inc.Princeton

Personalised recommendations