Operational Semantics of Multi-Agent Organizations

  • Jacques Ferber
  • Olivier Gutknecht
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1757)


This paper introduces a formal description of the operational semantics of multiagent organizations expressed in the Aalaadin generic model. This formalization is based on the π-calculus and the Chemical Abstract Machine (Cham).

By mapping an agent to a set of π-calculus processes and groups to Cham solutions, we show that it is possible to associate a precise semantics for the definition and dynamics of agents, groups and roles, independently of any implementation.

Our show that formalization verifies the properties of Aalaadin: agents act in several groups simultaneously, communications are described through abstract roles interaction, and organization management is performed by agents.


Multiagent System Operational Semantic Group Server Concurrent Programming Personal Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agha, G., Hewitt, C.: Concurrent programming using actors. In: Object-Oriented Concurrent Programming, pp. 37–53. MIT Press, Cambridge (1987)Google Scholar
  2. 2.
    Agha, G.A.: Actors: a Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge (1986)Google Scholar
  3. 3.
    Banâtre, J.-P., Le Métayer, D.: The GAMMA model and its discipline of programming. Science of Programming 15(1), 55–77 (1990)zbMATHCrossRefGoogle Scholar
  4. 4.
    Berry, G., Boudol, G.: The chemical abstract machine. Theoretical Computer Science 96(1), 217–248 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Boudol, G.: Some Chemical Abstract Machines. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993. LNCS, vol. 803, pp. 92–123. Springer, Heidelberg (1994)Google Scholar
  6. 6.
    Boudol, G.: Asynchrony and the pi-calculus. Technical Report RR-1702, Inria (1992)Google Scholar
  7. 7.
    Ferber, J., Carle, P.: Actors and agents as reflective concurrent objects: A mering IV perspective. IEEE Transactions on Systems, Man, and Cybernetics 21(6), 1420–1436 (1991)CrossRefGoogle Scholar
  8. 8.
    Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in multi-agent systems. In: Proceedings of 3d International Conference on Multi-Agent Systems (ICMAS 1998). IEEE, Los Alamitos (1998)Google Scholar
  9. 9.
    Milner, R.: Lectures on a Calculus for Communicating Systems. In: Brookes, S.D., Winskel, G., Roscoe, A.W. (eds.) Seminar on Concurrency. LNCS, vol. 197. Springer, Heidelberg (1985)Google Scholar
  10. 10.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I, II. Information and Computation 100(1), 1–77 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Pierce, B.C.: Foundational calculi for programming languages. In: Tucker, A.B. (ed.) Handbook of Computer Science and Engineering, ch.139. CRC Press, Boca Raton (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Jacques Ferber
    • 1
  • Olivier Gutknecht
    • 1
  1. 1.Laboratoire d’Informatique, Robotique et Micro-electronique de MontpellierUniversite Montpellier IIMontpellierFrance

Personalised recommendations