The MuSE Runtime System for SCI Clusters: A Flexible Combination of On-Stack Execution and Work Stealing

  • Markus Leberecht
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1734)


Beyond its high bandwidth and low latency properties, the Scalable Coherent Interface (SCI) technology offers capabilities for a shared-memory communication paradigm on distributed systems. In particular, networked workstations and PCs can basically be transformed into NUMA machines. As such, alternative execution models become possible that were otherwise infeasible on networks of workstations. With LANs, these normally rely on an inadequate communication infrastructure and they are fixed to the message-passing paradigm.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acher, G., Hellwagner, H., Karl, W., Leberecht, M.: A PCI-SCI Bridge for Building a PC Cluster with Distributed Shared Memory. In: Proc. 6th International Workshop on SCI-Based High-Performance Low-Cost Computing, SCIzzL, Santa Clara, CA (September 1996)Google Scholar
  2. 2.
    Blumofe, R.D., Leiserson, C.E.: Scheduling Multithreaded Computations by Work Stealing. In: Proc. 35th Annual Symposium on Foundations of Computer Science (FOCS 1994), November 1994, pp. 356–368 (1994)Google Scholar
  3. 3.
    Cann, D.C.: The Optimizing SISAL Compiler: Version 12.0. Technical Report UCRL-MA-110080, Lawrence Livermore National Laboratory (April 1992)Google Scholar
  4. 4.
    Eberl, M., Hellwagner, H., Karl, W., Leberecht, M., Weidendorfer, J.: Fast Communication Libraries on an SCI Cluster. In: Reinefeld, A., Hellwagner, H. (eds.) Scalable Coherent Interface: Technology and Applications (Proc. SCIEurope 1998), Cheshire Henbury, September 1998, pp. 165–175 (1998)Google Scholar
  5. 5.
    Färber, P.: Execution Architecture of the Multithreaded ADAM Prototype. PhD thesis, Eidgenössische Technische Hochschule, Zürich, Switzerland (1996)Google Scholar
  6. 6.
    Goldstein, S.C., Schauser, K.E., Culler, D.E.: Lazy Threads: Implementing a Fast Parallel Call. Journal of Parallel and Distributed Computing 37(1), 5–20 (1996)CrossRefGoogle Scholar
  7. 7.
    Hellwagner, H., Karl, W., Leberecht, M.: Enabling a PC Cluster for High-Performance Computing. SPEEDUP Journal (June 1997)Google Scholar
  8. 8.
    Ibel, M., Schauser, K.E., Scheiman, C.J., Weis, M.: High-Performance Cluster Computing Using Scalable Coherent Interface. In: Proc. 7th Workshop on Low-Cost/High-Performance Computing (SCIzzL-7), SCIzzL, Santa Clara, CA (March 1997)Google Scholar
  9. 9.
    Mainwaring, A.M., Culler, D.E.: Active Messages: Organization and Applications Programming Interface. Tech. Report, Computer Science Division, University of California at Berkeley (1995),
  10. 10.
    Plevyak, J., Karamcheti, V., Zhang, X., Chien, A.: A Hybrid Execution Model for Fine-Grained Languages on Distributed Memory Multicomputers. In: Proc. 1995 ACM/IEEE Supercomputing Conference. ACM/IEEE (1995)Google Scholar
  11. 11.
    Skedzielewski, S., Glauert, J.: IF1 - An Intermediate Form for Applicative Languages. Technical Report TR M-170, Lawrence Livermore National Laboratory (July 1985)Google Scholar
  12. 12.
    Taura, K., Matsuoka, S., Yonezawa, A.: StackThreads: An Abstract Machine for Scheduling Fine-Grain Threads on Stock CPUs. In: Ito, T., Yonezawa, A. (eds.) TPPP 1994. LNCS, vol. 907, pp. 121–136. Springer, Heidelberg (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Markus Leberecht
    • 1
  1. 1.LRR-TUMTechnische Universität München 

Personalised recommendations