Multilevel Mesh Partitioning for Optimising Aspect Ratio

  • C. Walshaw
  • M. Cross
  • R. Diekmann
  • F. Schlimbach
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1573)


Multilevel algorithms are a successful class of optimisation techniques which address the mesh partitioning problem. They usually combine a graph contraction algorithm together with a local optimisation method which refines the partition at each graph level. To date these algorithms have been used almost exclusively to minimise the cut-edge weight, however it has been shown that for certain classes of solution algorithm, the convergence of the solver is strongly influenced by the subdomain aspect ratio. In this paper therefore, we modify the multilevel algorithms in order to optimise a cost function based on aspect ratio. Several variants of the algorithms are tested and shown to provide excellent results.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnard, S.T., Simon, H.D.: A Fast Multilevel Implementation of Recursive Spectral Bisection for Partitioning Unstructured Problems. Concurrency: Practice & Experience 6(2), 101–117 (1994)CrossRefGoogle Scholar
  2. 2.
    Blazy, S., Borchers, W., Dralle, U.: Parallelization methods for a characteristic’s pressure correction scheme. In: Hirschel, E.H. (ed.) Flow Simulation with High Performance Computers II, Notes on Numerical Fluid Mechanics (1995)Google Scholar
  3. 3.
    Bouhmala, N.: Partitioning of Unstructured Meshes for Parallel Processing. PhD thesis, Inst. d’Informatique, Univ. Neuchatel (1998)Google Scholar
  4. 4.
    Bramble, J.H., Pasciac, J.E., Schatz, A.H.: The Construction of Preconditioners for Elliptic Problems by Substructuring I+II. Math. Comp. 47+49 (1986+1987)Google Scholar
  5. 5.
    Diekmann, R., Meyer, B., Monien, B.: Parallel Decomposition of Unstructured FEM-Meshes. Concurrency: Practice & Experience 10(1), 53–72 (1998)CrossRefGoogle Scholar
  6. 6.
    Diekmann, R., Schlimbach, F., Walshaw, C.: Quality Balancing for Parallel Adaptive FEM. In: Ferreira, A., Rolim, J.D.P., Teng, S.-H. (eds.) IRREGULAR 1998. LNCS, vol. 1457, pp. 170–181. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Farhat, C., Maman, N., Brown, G.: Mesh Partitioning for Implicit Computations via Domain Decomposition. Int. J. Num. Meth. Engng. 38, 989–1000 (1995)MATHCrossRefGoogle Scholar
  8. 8.
    Farhat, C., Mandel, J., Roux, F.X.: Optimal convergence properties of the FETI domain decomposition method. Comput. Methods Appl. Mech. Engrg. 115, 365–385 (1994)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Fiduccia, C.M., Mattheyses, R.M.: A Linear Time Heuristic for Improving Network Partitions. In: Proc. 19th IEEE Design Automation Conf., pp. 175–181. IEEE, Piscataway (1982)Google Scholar
  10. 10.
    Gupta, A.: Fast and effective algorithms for graph partitioning and sparse matrix reordering. IBM Journal of Research and Development 41(1/2), 171–183 (1996)Google Scholar
  11. 11.
    Hendrickson, B., Leland, R.: A Multilevel Algorithm for Partitioning Graphs. In: Proc. Supercomputing 1995 (1995)Google Scholar
  12. 12.
    Karypis, G., Kumar, V.: A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs. TR 95-035, Dept. Comp. Sci., Univ. Minnesota, Minneapolis, MN 55455 (1995)Google Scholar
  13. 13.
    Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs. TR 95-064, Dept. Comp. Sci., Univ. Minnesota, Minneapolis, MN 55455 (1995)Google Scholar
  14. 14.
    Mitchell, S.A., Vasavis, S.A.: Quality Mesh Generation in Three Dimensions. In: Proc. ACM Conf. Comp Geometry, pp. 212–221 (1992)Google Scholar
  15. 15.
    Schlimbach, F.: Load Balancing Heuristics Optimising Subdomain Aspect Ratios for Adaptive Finite Element Simulations. Diploma Thesis, Dept. Math. Comp. Sci., Univ. Paderborn (1998)Google Scholar
  16. 16.
    Vanderstraeten, D., Farhat, C., Chen, P.S., Keunings, R., Zone, O.: A Retrofit Based Methodology for the Fast Generation and Optimization of Large-Scale Mesh Partitions: Beyond the Minimum Interface Size Criterion. Comp. Meth. Appl. Mech. Engrg. 133, 25–45 (1996)MATHCrossRefGoogle Scholar
  17. 17.
    Vanderstraeten, D., Keunings, R., Farhat, C.: Beyond Conventional Mesh Partitioning Algorithms and the Minimum Edge Cut Criterion: Impact on Realistic Applications. In: Bailey, D., et al. (eds.) Parallel Processing for Scientific Computing, pp. 611–614. SIAM, Philadelphia (1995)Google Scholar
  18. 18.
    Walshaw, C., Cross, M.: Mesh Partitioning: a Multilevel Balancing and Refinement Algorithm. Tech. Rep. 98/IM/35, Univ. Greenwich, London SE18 6PF, UK (March 1998)Google Scholar
  19. 19.
    Walshaw, C., Cross, M., Diekmann, R., Schlimbach, F.: Multilevel Mesh Partitioning for Optimising Domain Shape. Tech. Rep. 98/IM/38, Univ. Greenwich, London SE18 6PF, UK (July 1998)Google Scholar
  20. 20.
    Walshaw, C., Cross, M., Everett, M.: Parallel Dynamic Graph Partitioning for Adaptive Unstructured Meshes. J. Par. Dist. Comput. 47(2), 102–108 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • C. Walshaw
    • 1
  • M. Cross
    • 1
  • R. Diekmann
    • 2
  • F. Schlimbach
    • 2
  1. 1.School of Computing and Mathematical SciencesThe University of GreenwichLondonUK
  2. 2.Department of Computer ScienceUniversity of PaderbornPaderbornGermany

Personalised recommendations