Advertisement

On Texts, Cases, and Concepts

  • Mario Lenz
  • Alexander Glintschert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1570)

Abstract

The management of textual information is getting more and more attention within the case-based reasoning community. In this paper, we will address the question of how a case base can be obtained from a given textual description and how this representation scheme can be enriched by higher level concepts.

Keywords

Textual Case-Based Rasoning information extraction text classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Busch, K.-H.: Customer Support for Siemens Products on the Internet and CDROM. In: Talk at EWCBR-1998 Industry Day (1998)Google Scholar
  2. 2.
    Cardie, C.: A case-based approach to knowledge acquisition for domain-specific sentence analysis. In: Proc. AAAI-1993 (1993)Google Scholar
  3. 3.
    Cunningham, H.: Information extraction - a user guide. Research Memo CS-97-02. University of Sheffield, Sheffield (1997)Google Scholar
  4. 4.
    Glintschert, A.: ThemeSearch: Aufbau einer intelligenten, themenspezifischen Suchmaschine im WWW. Master’s thesis. Humboldt University, Berlin (1998)Google Scholar
  5. 5.
    Leake, D.B., Plaza, E. (eds.): ICCBR 1997. LNCS(LNAI), vol. 1266. Springer, Heidelberg (1997)Google Scholar
  6. 6.
    Lenz, M.: Defining Knowledge Layers for Textual Case-Based Reasoning. In: Smyth and Cunningham [15], pp. 298–309Google Scholar
  7. 7.
    Lenz, M.: Managing the Knowledge Contained in Technical Documents. In: Reimer, U. (ed.) Proc. Practical Aspects of Knowledge Management, PAKM-1998 (1998)Google Scholar
  8. 8.
    Lenz, M., Burkhard, H.-D.: Lazy propagation in Case Retrieval Nets. In: Whalster [16], pp. 127–131.Google Scholar
  9. 9.
    Lenz, M., Burkhard, H.-D.: CBR for Document Retrieval - The FALLQ Project. In: Leake and Plaza [5], pp. 84–93Google Scholar
  10. 10.
    Lenz, M., Burkhard, H.-D., Bartsch-Spörl, B., Wess, S.: Case-Based Reasoning Technology. LNCS (LNAI), vol. 1400. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Lenz, M., Hübner, A., Kunze, M.: Textual CBR. In: Lenz, M., Bartsch-Spörl, B., Burkhard, H.-D., Wess, S. (eds.) Case-Based Reasoning Technology [10], ch. 5. LNCS (LNAI), vol. 1400, pp. 115–138. Springer, Heidelberg (1998)Google Scholar
  12. 12.
    Richter, M.M.: The knowledge contained in similarity measures. In: Aamodt, A., Veloso, M.M. (eds.) ICCBR 1995. LNCS, vol. 1010, Springer, Heidelberg (1995), http://wwwagr.informatik.unikl.de/~lsa/CBR/Richtericcbr95remarks.html Google Scholar
  13. 13.
    Richter, M.M.: Introduction. In: Lenz, M., Bartsch-Spörl, B., Burkhard, H.-D., Wess, S. (eds.) Case-Based Reasoning Technology [10], ch. 1. LNCS (LNAI), vol. 1400, pp. 1–16. Springer, Heidelberg (1998)Google Scholar
  14. 14.
    Riloff, E., Lehnert, W.: Information extraction as a basis for high-precision text classification. ACM Transactions on Information Systems 12(3), 296–333 (1994)CrossRefGoogle Scholar
  15. 15.
    Smyth, B., Cunningham, P. (eds.): EWCBR 1998. LNCS (LNAI), vol. 1488. Springer, Heidelberg (1998)Google Scholar
  16. 16.
    Wahlster, W. (ed.): Proceedings 12th European Conference on Artificial Intelligence ECAI-1996. John Wiley and Sons, Chichester (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Mario Lenz
    • 1
  • Alexander Glintschert
    • 2
  1. 1.Dept. of Computer ScienceHumboldt UniversityBerlinGermany
  2. 2.infopark online service GmbHBerlinGermany

Personalised recommendations