Biosensor Design and Interfacing

  • Bhavik A. Patel
  • Costas A. Anastassiou
  • Danny O’Hare


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bates RG. Determination of pH: theory and practice, 2nd ed. New York: John Wiley and Sons, 1964.Google Scholar
  2. 2.
    Cater DB, Silver IA. Microelectrodes and electrodes in biology. In: Ives DJG, Janz GJ (eds) Reference Electrodes. New York: Academic Press, 1961.Google Scholar
  3. 3.
    Hinke JAM. Glass microelectrodes for measuring intracellular activities of sodium and potassium. Nature 1959; 184:1257–1258.CrossRefGoogle Scholar
  4. 4.
    Ellis D, Thomas RC. Direct measurement of intracellular pH of mammalian cardiac muscle. Journal of Physiology (London) 1976; 262(3):755–771.Google Scholar
  5. 5.
    Bakker E., Pretsch E. Potentiometric Sensors for Trace-Level Analysis Trends in Analytical Chemistry 2005; 24(3): 199–207.Google Scholar
  6. 6.
    Cobbe SM, Poole-Wilson PA. Catheter pH electrodes for continuous intravascular recording. Journal of Medical Engineering and Technology 1980;4(3):122–124.CrossRefGoogle Scholar
  7. 7.
    Ammann D, Lanter F. Steiner RA, Schulthess P and Simon, W. Neutral carrier based hydrogen ion selective microelectrode for extracellular and intracellular studies. Analytical Chemistry 1981; 53:2267–2269.CrossRefGoogle Scholar
  8. 8.
    Ives DJG. Oxide, oxygen and sulfide electrodes. In: Ives DJG, Janz GJ (eds) Reference electrodes. New York: Academic Press, 1961.Google Scholar
  9. 9.
    Glab S, Hulanicki A, Edwall G, Ingman F. Metal-metal oxide and metal-oxide electrodes as pH sensors. Critical Reviews in Analytical Chemistry 1989;21(1):29–47.CrossRefGoogle Scholar
  10. 10.
    Haggard HW, Greenberg LA. An antimony electrode for the continuous recording of the acidity of human gastric contents. Science 1941; 93:479–480.CrossRefGoogle Scholar
  11. 11.
    Horrocks BR, Mirkin MV, Pierce DT, Bard AJ, Nagy G, Toth K. Scanning electrochemical microscopy: ion selective potentiometric microscopy. Analytical 1993; 65(9):1213–1224.Google Scholar
  12. 12.
    Katsube T, Lauks I, Zemel JN. pH-sensitive sputtered iridium oxide-films. Sensors and Actuators 1982; 2(4):399–410.CrossRefGoogle Scholar
  13. 13.
    Perley GA, Godshalk JB. Cell for pH measurements. U.S. Patent no. 2,416,949, 1947.Google Scholar
  14. 14.
    Burke LD, Mulcahy JK, Whelan DP. Preparation of an oxidized iridium electrode and the variation of its potential with pH. Journal of Electroanalytical Chemistry 1984; 163(1–2):117–128.Google Scholar
  15. 15.
    Hitchman ML, Ramanathan S. Evaluation of iridium oxide electrodes formed by potential cycling as pH probes. Analyst 1988; 113(1):35–39.CrossRefGoogle Scholar
  16. 16.
    Horrocks BR, Mirkin MV, Pierce DT, Bard AJ, Nagy G, Toth K. Scanning electrochemical microscopy: ion selective potentiometric microscopy. Analytical Chemistry 1993; 65(9):1213–1224.CrossRefGoogle Scholar
  17. 17.
    Beyenal H, Davis CC, Lewandowski Z. An improved severinghaus-type carbon dioxide microelectrode for use in biofilms. Sensors and Actuators 2004;B97(2–3):202–210.Google Scholar
  18. 18.
    Suzuki H, Arakawa H, Sasaki S, Karube I. Micromachined severinghaus-type carbon dioxide electrode. Analytical Chemistry 1999; 71(9):1737–1743.CrossRefGoogle Scholar
  19. 19.
    Hitchman ML, Ramanthan S. Considerations of the pH-dependance of hydrous oxide-film formed on iridium by voltammetric cycling. Electroanalysis 1992;4(3):291–297.CrossRefGoogle Scholar
  20. 20.
    Marzouk SAM, Ufer S, Buck RP, Johnson TA, Dunlap LA, Cascio WE. Electrodeposited iridium oxide pH electrode for measurement of extracellular myocardial acidosis during acute ischemia. Analytical Chemistry 1998 70(23):5054–5061.CrossRefGoogle Scholar
  21. 21.
    VanHoudt P, Lewandowski Z, Little B. Iridium oxide pH microelectrode. Biotechnology and Bioengineering 1992; 40(5):601–608.CrossRefGoogle Scholar
  22. 22.
    Moussy F, Harrison DJ. Prevention of the rapid degradation of subcutaneously implanted AgAgCl reference electrodes using polymer-coatings. Analytical Chemistry 1994; 66(5):674–679.CrossRefGoogle Scholar
  23. 23.
    Kuan SS, Guilbault GG. Ion-selective electrodes and biosensors based on ISEs. In: Turner APF et al (eds) Biosensors: Fundamentals and Applications. Oxford University Press 1987.Google Scholar
  24. 24.
    Wightman RM, Wipf DO. Voltammetry at ultramicroelectrodes. Electroanalytical Chemistry 1989; 15:267–353Google Scholar
  25. 25.
    Phillips CG, Jansons KM. The short-time transient of diffusion outside a conducting body. In: Proceedings of the Royal Society of London A: Mathematical and Physical Sciences 1990; 428(1875):431–449.MATHCrossRefGoogle Scholar
  26. 26.
    O’Hare D, Parker KP, Winlove CP. Electrochemical method for direct measurement of oxygen concentration and diffusivity in the intervertebral-disk — Electrochemcial characterization and tissue sensor interactions. Journal of Biomedical Engineering 1991; 13(4):304–312CrossRefGoogle Scholar
  27. 27.
    Justice JB Jr. (eds) Voltammetry in the neurosciences. Humana Press, 1987.Google Scholar
  28. 28.
    Cahill, PS, Walker QD, Finnegan JM, Mickelson GE, Travis ER, Wightman RM. Microelectrodes for the measurement of catecholamines in biological systems. Analytical Chemistry 1996; 68(18):3180–3186.CrossRefGoogle Scholar
  29. 29.
    Wightman RM, Brown DS, Kuhr WG, Wilson RL. Molecular specificity of in vivo electrochemical measurements. In: Justice JB Jr. (eds) Voltammetry in the Neurosciences: Principles, Methods and Application. Humana Press, 1987.Google Scholar
  30. 30.
    Michael D, Travis E, Wightman RM. Colour images for fast-scan CV measurements in biological systems. Analytical Chemistry 1998; 70:568A–592A.CrossRefGoogle Scholar
  31. 31.
    Heien MLAV, Johnson MA, Wightman RM. Resolving neurotransmitters detected by fast-scan cyclic voltammetry. Analytical Chemistry 2004;76(19):5697–5704.CrossRefGoogle Scholar
  32. 32.
    Malinski T, Taha Z. Nitric-oxide release from a single cell measured insitu by a porphrinic-based microsensor. Nature 1992; 358(6388):676–678.CrossRefGoogle Scholar
  33. 33.
    Updike JW, Hicks GP. The enzyme electrode. Nature 1967; 214:986–988.CrossRefGoogle Scholar
  34. 34.
    Bartlett PN, Caruana DJ. Electrochemical immobilization of enzymes V: Microelectrodes for the detection of glucose based on glucose-oxide immobilized in a poly(phenol) film. Analyst 1992; 117(8):1287–1292.CrossRefGoogle Scholar
  35. 35.
    Khurana MK, Winlove CP, O’Hare D. Detection mechanism of metallised carbon epoxy oxidase enzyme based sensors. Electroanalysis 2003; 15:1023–1030.CrossRefGoogle Scholar
  36. 36.
    Barker S. Immobilization of biological components of biosensors. In: Turner APF, Karube I, Wilson G (eds) Biosensors: Fundamentals and Applications, Oxford University Press, 1987.Google Scholar
  37. 37.
    Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I. “Plugging into enzymes”: Nanowiring of redox enzymes by a gold nanoparticle. Science 2003;299(5614):1877–1881.CrossRefGoogle Scholar
  38. 38.
    Cass AEG, Davis G, Francis GD, Hill HAO, Aston WJ, Higgins IJ, et al. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Analytical Chemistry 1984; 56(4):667–671.CrossRefGoogle Scholar
  39. 39.
    Bartlett PN, Bradford VQ. Modification of glucose-oxidase by tetrathiafulvalene, JCS Chemical Communications 1990; 16:1135–1136.CrossRefGoogle Scholar
  40. 40.
    Zhao S, Korell U, Cuccia L, Lennox RB. Electrochemistry of organic conducting salt electrodes — A unified mechanistic description. Journal of Physical Chemistry 1992; 96(13):5641–5652.CrossRefGoogle Scholar
  41. 41.
    Boutelle MG, Stanford C, Fillenz M, Albery WJ, Bartlett PN. An amperometric enzyme electrode for monitoring brain glucose in the freely moving rat. Neuroscience Letters 1986; 72(3):283–288.CrossRefGoogle Scholar
  42. 42.
    Ye L, Hammerle M, Olstehoorn AJJ, Schumann W, Schmidt HL, Duine JA, et al. High current density “wired” quinoprotein glucose dehydrogenase electrode. Analytical Chemistry 1993; 65(3):238–241.CrossRefGoogle Scholar
  43. 43.
    Heller A. Electrical wiring of redox enzymes. Accounts of Chemical Research 1990; 23(5):128–134.CrossRefGoogle Scholar
  44. 44.
    Hochstetler SE, Puopolo M, Gustincich S, Raviola E, Wightman RM. Real time amperometric measurements of zeptomole quantities of dopamine released from neurons. Analytical Chemistry 2000; 72:489–496.CrossRefGoogle Scholar
  45. 45.
    Cass AEG (eds) Biosensors: a practical approach, 2nd ed. Oxford University Press, 2004.Google Scholar
  46. 46.
    Pennarun GI, Boxall C, O’Hare D. The micro-optical ring electrode: development of a novel electrode for photoelectrochemistry. Analyst 1996; 121:1779–1788.CrossRefGoogle Scholar
  47. 47.
    Lindsay A. Development of a photoelectrochemical sensor for the determination of cyanide in the blood of burns victims. PhD Thesis, University of London 2005.Google Scholar
  48. 48.
    Ross SE, Shi YE, Seliskar CJ and Heineman WJ. Spectroelectrochemical sensing:planar waveguides. Electrochimica Acta 2003; 48(20–22):3313–3323.CrossRefGoogle Scholar
  49. 49.
    Wisniewski N, Reichert M. Methods for reducing biosensor membrane biofouling. Colloids and Surfaces B: Biointerfaces 2000; 18(3–4):197–219.CrossRefGoogle Scholar
  50. 50.
    Albery WJ, Galley PT, Murphy LJ. A dialysis electrode for glycerol, Journal of Electroanalytical Chemistry 1993; 334(1–2):161–166.CrossRefGoogle Scholar
  51. 51.
    Compton RG, Foord JS, Marken F. Electroanalysis at diamond-like and doped diamond electrodes. Electroanalysis 2003; 15:1349–1363.CrossRefGoogle Scholar
  52. 52.
    Park J, Show Y, Quaiserova V, Galligan JJ, Fink GD and Swain GM. Diamond microelectrodes for use in biological environments. Journal of Electroanalytical Chemistry 2005; 583:56–68.CrossRefGoogle Scholar
  53. 53.
    Attard GS, Bartlett PN, Coleman RBN, Elliott JM, Owen JR, Wang JH. Mesoporous platinum films from lyotropic liquid crystalline phases Science 1997; 278:838–840.Google Scholar
  54. 54.
    Silver IA. Problems in investigation of tissue oxygen microenvironment. Advances in Chemistry 1973; 118:343–351.Google Scholar
  55. 55.
    Albanese RA. Use of membrane-covered oxygen cathodes in tissue. Journal of Theoretical 1971; 33(1):91–103.CrossRefGoogle Scholar
  56. 56.
    Greenbaum AR, Jarvis JC, O’Hare D, Manek S, Green CJ, Pepper JR, et al. Oxygenation and perfusion of rabbit tibialis anterior muscle subjected to different patterns of electrical stimulation. The Journal of Muscle Research and Cell Motility 2000; 21(3):285–291.CrossRefGoogle Scholar
  57. 57.
    Bard AJ, Faulkner LR. Electrochemical Methods. Wiley and Sons, 1980.Google Scholar
  58. 58.
    Anastassiou CA, Parker KH, O’Hare D. Determination of Kinetic and Thermodynamic parameters of surface confined species through AC voltammetry and a nonstationary signal processing technique: the Hilbert transform. Analytical Chemistry 2005; 77:3357–3364.CrossRefGoogle Scholar
  59. 59.
    Bockris JO’M, Khan SUM. Surface Electrochemistry. New York: Plenum Press 1993.Google Scholar
  60. 60.
    Laviron E. General expression of the linear potential sweep in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry 1979; 101:19–28.CrossRefGoogle Scholar
  61. 61.
    Newman JS. Electrochemical Systems. New Jersey: Prentice Hall 1991.Google Scholar
  62. 62.
    Chen K, Hirst J, Camba R, Bonagura CA, Stout CD, Burgess BK, et al. Atomically defined mechanism for proton transfer to a buried redox centre in a protein. Nature 2000; 405:814–817.CrossRefGoogle Scholar
  63. 63.
    Watkins JJ, Chen J, White HS, Maisonhaute E, Amatore C. Zeptomole voltammetric detection and electron-transfer rate measurements using platinum electrodes of nanometer dimensions. Analytical Chemistry 2003; 75:3962–3917.CrossRefGoogle Scholar
  64. 64.
    Wightman RM. Microvoltammetric electrodes, Analytical Chemistry 1981; 53(9):1125A–1134A.CrossRefGoogle Scholar
  65. 65.
    Heien MLAV, Khan AS, Ariansen JL, Cheer JF, Phillips PEM, Wassum KM, Wightman RM. Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats. In: Proceedings of the National Academy of Sciences 2005; 102(29):10023–10028.CrossRefGoogle Scholar
  66. 66.
    Armstrong FA, Heering HA, Hirst J. Reactions of complex metalloproteins studied by protein-film voltammetry, Chemical Society Reviews 1997; 26:169–179.CrossRefGoogle Scholar
  67. 67.
    Guo SX, Zhang J, Elton DM, Bond AM. Fourier transform large-amplitude alternating current cyclic voltammetry of surface-bound azurin. Analytical Chemistry 2004; 76:166–177.CrossRefGoogle Scholar
  68. 68.
    McNulty DA, MacFie HJH. The effect of different baseline estimators on the limit of quantification in chromatography. Journal of Chemometrics. 1997;11:1–11.CrossRefGoogle Scholar
  69. 69.
    Brazill SA, Bender SE, Hebert NE, Cullison JK, Kristensen EW, Kuhr WG. Sinusoidal voltammetry: a frequency based electrochemical detection technique. Journal of Electroanalytical Chemistry 2002; 531:119–132.CrossRefGoogle Scholar
  70. 70.
    Bond AM, Duffy NW, Guo SX, Zhang J, Elton D. Changing the look of voltammetry, Analytical Chemistry 2005; 77(9): 214A–220A.CrossRefGoogle Scholar
  71. 71.
    Director SW, Rohrer RA. Introduction to System Theory. McGraw-Hill, 1972.Google Scholar
  72. 72.
    Bendat JS, Piersol AG. Random Data. New York: Wiley and Sons, 2000.MATHGoogle Scholar
  73. 73.
    Gabor D. Theory of communication. In: Proceedings of IEE 1946; 93:429–457.Google Scholar
  74. 74.
    Kiss IZ, Zhai YM, Hudson JL. Emerging coherence in a population of chemical oscillators. Science 2002; 296:1676–1678.CrossRefGoogle Scholar
  75. 75.
    Engblom SO, Myland JC, Oldham KB. Must AC voltammetry employ small signals? Journal of Electroanalytical Chemistry 2000; 480:120–132.CrossRefGoogle Scholar
  76. 76.
    Gavaghan DJ, Bond AM. A complete numerical simulation of the techniques of alternating current linear sweep and cyclic voltammetry: analysis of a reversible process by conventional and fast Fourier transform methods. Journal of Electroanalytical Chemistry 2000; 480:133–149.CrossRefGoogle Scholar
  77. 77.
    Sher AA, Bond AM, Gavaghan DJ, Harriman K, Feldberg SW, Duffy NW, et al. Resistance, capacitance, and electrode kinetic effects in Fourier-transformed large-amplitude sinusoidal voltammetry: emergence of powerful and intuitively obvious tools for recognition of patterns of behaviour. Analytical Chemistry 2004; 76:6214–6228.CrossRefGoogle Scholar
  78. 78.
    Bertram M, Beta C, Pollmann M, Mikhailov AS, Rotermund HH, Ertl G. Pattern formation on the edge of chaos: experiments with CO oxidation on a Pt(110) surface under global delayed feedback. Physical Review E 2003; 67(3):art. no. 036208 part 2.Google Scholar
  79. 79.
    Strogatz SH. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and engineering. Massachusetts: Perseus Books Publishing, 2000.Google Scholar
  80. 80.
    Anastassiou CA, Ducros N, Parker KH, O’Hare D. Characterisation of AC voltammetric reaction diffusion dynamics: from patterns to physical parameters, Analytical Chemistry, in press.Google Scholar
  81. 81.
    Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society London 1998;454:903–995.MATHMathSciNetCrossRefGoogle Scholar
  82. 82.
    Huang W, Shen Z, Huang NE, Fung YC. Use of intrinsic modes in biology: examples of indicial response of pulmonary blood pressure to +/-step hypoxia. In: Proceedings of National Academy of Sciences 1998; 95:12766–12771.CrossRefGoogle Scholar
  83. 83.
    Huang W, Shen Z, Huang NE, Fung YC. Nonlinear indicial response of complex nonstationary oscillations as pulmonary hypertension responding to step hypoxia. In: Proceedings of National Academy of Sciences 1999; 96:1834–1839.CrossRefGoogle Scholar
  84. 84.
    Fu CY, Petrich LI, Daley PF, Burnham AK. Intelligent signal processing for detection system optimization. Analytical Chemistry 2005; 77(13):4051–4057.CrossRefGoogle Scholar
  85. 85.
    Zhang XQ, Jin JY. Wavelet derivative: application in multicomponent analysis of electrochemical signals. Electroanalysis 2004; 16(18):1514–1520.CrossRefGoogle Scholar
  86. 86.
    Day TM, Unwin PR, Wilson NR, Macpherson JV. Electrochemical templating of metal nanoparticles and nanowires on single-walled carbon nanotube networks. Journal of the American Chemical Society 2005; 127:10639–10647.CrossRefGoogle Scholar
  87. 87.
    Burt DP, Wilson NR, Weaver JMR, Dobson PS, Macpherson JV. Nanowire probes for high resolution combined scanning electrochemical microscopyatomic force microscopy. Nano Letters 2005; 5:639–643.CrossRefGoogle Scholar
  88. 88.
    Torsi L, Dodabalapur A. Organic thin-film transistors as plastic analytical sensors. Analytical Chemistry 2005; 380A–387A.Google Scholar
  89. 89.
    Zhou ZR, Meyerhoff ME. Preparation and characterisation of polymeric coatings with combined nitric oxide release and immobilized active heparin. Biomaterials 2005; 26:6506–6517.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2006

Authors and Affiliations

  • Bhavik A. Patel
    • 1
  • Costas A. Anastassiou
    • 1
  • Danny O’Hare
    • 1
  1. 1.Imperial College LondonUK

Personalised recommendations