Advertisement

ASSIST As a Research Framework for High-Performance Grid Programming Environments

  • Marco Aldinucci
  • Massimo Coppola
  • Marco Vanneschi
  • Corrado Zoccolo
  • Marco Danelutto

10.1 Introduction: High-Performance Application Development and Grids

The research activity of our group at the Department of Computer Science, University of Pisa, is focused on programming models and environments for the development of high-performance multidisciplinary applications. The enabling computing platforms we are considering are complex distributed architectures, whose nodes are parallel machines of any kind, including PC/workstation clusters. In general such platforms are characterized by heterogeneity of nodes, and by dynamicity in resource management and allocation. In this context, Grid platforms at various levels of integration [25] are of main interest, including complex distributed structures of general and dedicated subsystems, private heterogeneous networks, and systems for pervasive and ubiquitous computing. In the following, we shall speak of Grids to refer to such architectural scenario.

Keywords

Association Rule External Object Grid Application Globus Toolkit Virtual Processor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, S. Magini, P. Pesciullesi, L. Potiti, R. Ravazzolo, M. Torquati, M. Vanneschi, and C. Zoccolo, The Implementation of ASSIST, an Environment for Parallel and Distributed Programming, in Proc. of Euro-Par2003: Parallel and Distributed Computing, LNCS n. 2790 (Springer, 2003)Google Scholar
  2. [2]
    M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, M. Danelutto, P. Pesciullesi, R. Ravazzolo, M. Torquati, M. Vanneschi, and C. Zoccolo. ASSIST Demo: A High Level, High Performance, Portable, Structured Parallel Programming Environment at Work, in Proc. of Euro-Par2003: Parallel and Distributed Computing, LNCS n. 2790 (Springer, 2003)Google Scholar
  3. [3]
    M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, M. Danelutto, P. Pesciullesi, R. Ravazzolo, M. Torquati, M. Vanneschi, and C. Zoccolo. A Framework for Experimenting with Structured Parallel Programming Environment Design, in Proc. of Intl. Conference ParCo2003: Parallel Computing, Dresden, Germany, September 2003Google Scholar
  4. [4]
    M. Aldinucci, M. Danelutto, and P. Teti. An Advanced Environment Supporting Structured Parallel Programming in Java. Future Generation Computer Systems 19(5), 611–626, (2003)CrossRefGoogle Scholar
  5. [5]
    M. Aldinucci, S. Campa, M. Coppola, M. Danelutto, D. Laforenza, D. Puppin, L. Scarponi, M. Vanneschi, and C. Zoccolo, Components for High-Performance Grid Programming in Grid.it, Proceedings of the Workshop on Component Models and Systems for Grid Applications, St. Malo, France, 2004, satellite workshop of ICS’04 (in press).Google Scholar
  6. [6]
    R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker, and B. Smolinski. Toward a Common Component Architecture for High Performance Scientific computing, Proc. 8th High Performance Distributed Computing (HPDC’99), 1999Google Scholar
  7. [7]
    B. Bacci, M. Danelutto, S. Pelagatti, and M. Vanneschi. SkIE: A Heterogeneous Environment for HPC Applications, Par. Computing (25), 1827–1852 (1999)CrossRefGoogle Scholar
  8. [8]
    H E. Bal, Ibis: A Java-based Grid Programming Environment, in Proc. of Euro-Par2003 (invited talk), LNCS n. 2790 (2003).Google Scholar
  9. [9]
    R. Baraglia, M. Danelutto, D. Laforenza, S. Orlando, P. Palmerini, P. Pesciullesi, R. Perego, and M. Vanneschi. AssistConf: A Grid Configuration Tool for the ASSIST Parallel Programming Environment, in Proc. of 11th Euromicro Conference on Parallel Distributed and Network based Processing (Euro-PDP’03), Genova, Italy, February 2003, pp. 193–200Google Scholar
  10. [10]
    G. Beneken, U. Hammerschall, M. Broy, M.V. Cengarle, J. Jürjens, B. Rumpe, and M. Schoenmakers, Componentware—State of the Art 2003. Background paper for the Understanding Components Workshop, Venice, 7–9 October 2003Google Scholar
  11. [11]
    F. Berman, R. Wolski, H. Casanova, et al., Adaptive Computing on the Grid using AppLeS. IEEE Trans. on Parallel and Distributed Systems 14(5), (2003).Google Scholar
  12. [12]
    E. Bruneton, T. Coupaye, and J.B. Stefani, The Fractal Composition Framework, the Object Web Consortium, Interface Specification, July 2002Google Scholar
  13. [13]
    CCA Forum home page, http://www.cca-forum.org/ Google Scholar
  14. [14]
    M. Cole, Algorithmic Skeletons: Structured Management of Parallel Computation (MIT, Cambridge, MA, 1989).zbMATHGoogle Scholar
  15. [15]
    M. Coppola and M. Vanneschi, High Performance Data Mining with Skeleton-based Structured Programming, Parallel Computing 28, 793–813, (2002) special issue on Parallel Data Intensive Algorithms, Elsevier ScienceCrossRefGoogle Scholar
  16. [16]
    M. Coppola, P. Pesciullesi, R. Ravazzolo, and C. Zoccolo A Parallel Knowledge Discovery System for Customer Profiling, Proceedings of Euro-Par 2004, LNCS 3149 (2004)Google Scholar
  17. [17]
    The CORBA & CCM home page, http://ditec.um.es/~dsevilla/ccm/ Google Scholar
  18. [18]
    F. Burbera et al., Unraveling the Web Services Web: An introduction to SOAP, WSDL, and UDDI. IEEE Internet Computing 6(2), 86–93 (2002)CrossRefGoogle Scholar
  19. [19]
    H. Dail, F. Berman, and H. Casanova. A Modular Scheduling Approach for Grid Application Development Environments, Journal of Parallel and Distributed Computing 63(5), (2003)Google Scholar
  20. [20]
    H. Dail, O. Sievart, F. Berman, H. Casanova, A. Yarkahn, S. Vadhiyar, J. Dongarra, C. Liu, L. Yang, D. Angulo, and I. Foster. Scheduling in the Grid Application Development Software Project, in Grid Resource Management (Kluwer, 2003)Google Scholar
  21. [21]
    P. D’Ambra, M. Danelutto, D. Di Serafino, and M. Lapegna. Integrating MPI-based Numerical Software into an Advanced Parallel Computing Environment, Euromicro Conference on Parallel, Distributed and Network-based Processing, Genova IEEE (2003)Google Scholar
  22. [22]
    M. Danelutto, Efficient Support for Skeletons on Workstation Clusters, Parallel Processing Letters 11(1), 41–56 (2001)CrossRefGoogle Scholar
  23. [23]
    M. Danelutto, Adaptive Task Farm Implementation Strategies, Euromicro Conference on Parallel, Distributed and Network-based Processing, La Coruna (IEEE, 2004), pp. 416–423.Google Scholar
  24. [24]
    B. Ensink, J. Stanley, and V. Adve. Program Control Language: A Programming Language for Adaptive Distributed Applications, Journal of Parallel and Distributed Computing (in press)Google Scholar
  25. [25]
    I. Foster and C. Kesselman (eds.), The Grid: Blueprint for a New Computing Infrastructure (Morgan Kaufmann, San Francisco, CA, 1999.)Google Scholar
  26. [26]
    I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual Organization, The International Journal of High Performance Computing Applications 15(3), 200–222, (2001).CrossRefGoogle Scholar
  27. [27]
    I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration, 2002 http://www.globus.org/research/papers/ogsa.pdf Google Scholar
  28. [28]
    I. Foster et al., Grid Services for Distributed System Integration, Computer 35(6), 37–46 (2002)CrossRefGoogle Scholar
  29. [29]
    E. Gamma, R. Helm, R. Johnson, and J. Vissides. Design Patterns: Elements of Reusable Object-oriented Software (Addison Wesley, 1994).Google Scholar
  30. [30]
    M. Govindaraju, S. Krishnan, A. Slominski K. Chiu, D. Gannon, and R. Bramley, XCAT 2.0: A Component-based Programming Model for Grid Web Services. Technical Report TR562, Department of Computer Science, Indiana University, 2002Google Scholar
  31. [31]
    Grid.it Project, Enabling Platforms for High-performance Computational Grid Oriented to Scalable Virtual Organizations, MIUR, FIRB National Research Programme, November 2002Google Scholar
  32. [32]
    K. Keahey and D. Gannon. PARDIS. A Parallel Approach to CORBA, 6th IEEE Int. Symp. on High Performance Distributed Computing, 1997, pp. 31–39Google Scholar
  33. [33]
    K. Kennedy, M. Mazina, J. Mellor-Crummey, K. Cooper, L. Torczon, F. Berman, A. Chien, H. Dail, O. Sievert, D. Angulo, I. Foster, D. Gannon, L. Johnsson, C. Kesselman, R. Aydt, D. Reed, J. Dongarra, S. Vadhiyar, and R. Wolski, Toward a framework for preparing and executing adaptive Grid programs, in Proc. of NSF Next Generation Systems Program Workshop (IPDPS 2002), 2002Google Scholar
  34. [34]
    W.A. Kosters, E. Marchiori, and A.A.J. Oerlemans, Mining Clusters with Association rules, in Advances in Intelligent Data Analysis, LNCS 1642 ed. by D. Hand, J. Kok, M. Berthold (1999), pp. 39–50Google Scholar
  35. [35]
    Object Management Group, The Common Object Request Broker: Architecture and Specification, (2000) Minor revision 2.4.1, http://www.omg.org Google Scholar
  36. [36]
    M. Parashar, G. Laszewski, S. Verma, J. Gawor, K. Keahey, N. Rehn. A CORBA Commodity Grid Kit, Concurrency Practice and Experience, special issue on GRID Computing Environments 14, 1057–1074 (2002)zbMATHCrossRefGoogle Scholar
  37. [37]
    C. Prez, T. Priol, A. Ribes, PaCO++: A Parallel Object Model for High Performance Distributed Systems, in Distributed Object and Component-based Software Systems, Hawaii Int. Conf. On System Sciences, IEEE (2004)Google Scholar
  38. [38]
    T. Priol, Programming the Grid with Distributed Objects, in Proc. of Workshop on Performance Analysis and Distributed Computing (PACD 2002), 2002Google Scholar
  39. [39]
    D. C. Schmidt, The ADAPTIVE Communication Environment: An Object-oriented Network Programming Toolkit for Developing Communication Software, in Proc of Sun User Group conferences, San Jose, CA, USA, December, 1993 and San Francisco, CA, USA, June 1993Google Scholar
  40. [40]
    J.M: Schopf, Structural Prediction Models for High-performance Distributed Applications, Cluster Computing Conference (1997)Google Scholar
  41. [41]
    Sun M.sys, JavaBeans home page, http://java.sun.com/products/javabeansGoogle Scholar
  42. [42]
    D. Thain, T. Tannenbaum and M. Livny, Condor and the Grid, Grid Computing: Making the Global Infrastructure a Reality, ed. by F. Berman and G. Fox, and T. Hey (2002)Google Scholar
  43. [43]
    M. Vanneschi, The Programming Model of ASSIST, an Environment for Parallel and Distributed Portable Applications, Par. Computing 28(12),1709–1732 (2002)zbMATHCrossRefGoogle Scholar
  44. [44]
    F. Vraalsen, R. Aydt, C. Mendes, and D. Reed. Performance Contracts: Predicting and Monitoring Grid Application Behaviour, TR, Comp. Sc. Dept, Univ. Illinois at Urbana-Champaign, 2001Google Scholar
  45. [45]
    W3C.Web Services home page, http://www.w3.org/2002/ws/ Google Scholar
  46. [46]
    R. Wolski, N. Spring, and J. Hayes. The Network Weather Service: A Distributed Resource Performance Forecasting Service for metacomputing, Journal of Future Generation Computing Systems, 15(5–6), (1999)Google Scholar

Copyright information

© Springer-Verlag London Limited 2006

Authors and Affiliations

  • Marco Aldinucci
    • 1
    • 2
  • Massimo Coppola
    • 1
    • 2
  • Marco Vanneschi
    • 2
  • Corrado Zoccolo
    • 2
  • Marco Danelutto
    • 2
  1. 1.Dipartimento di InformaticaUniversit’ di PisaItaly
  2. 2.Istituto di Scienza e Tecnologie della InformazioneCNRPisaItaly

Personalised recommendations