Avida: Evolution Experiments with Self-Replicating Computer Programs

  • Charles Ofria
  • Claus O. Wilke


Virtual Machine Test Environment Replication Rate Central Processing Unit High Mutation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adami C, Brown CT, Haggerty MR (1995) Abundance distributions in artificial life and stochastic models: “Age and Area” revisited. Lect Notes AI 929: 503–514.Google Scholar
  2. 2.
    Adami C, Ofria C, Collier TC (2000) Evolution of biological complexity. Proc. Natl. Acad. Sci. U.S.A. 97:4463–4468.CrossRefGoogle Scholar
  3. 3.
    Barton N, Zuidema W (2003) Evolution: The erratic path towards complexity. Curr Biol 13:R649–R651.CrossRefGoogle Scholar
  4. 4.
    Chow SS, Wilke CO, Ofria C, Lenski RE, Adami C (2004) Adaptive radiation from resource competition in digital organisms. Science 305:84–86.CrossRefGoogle Scholar
  5. 5.
    Chu J, Adami C (1997) Propagation of information in populations of selfreplicating code. In: Langton CG, Shimohara T (eds.) Proc. Artificial Life V, pp. 462–469, MIT Press.Google Scholar
  6. 6.
    Cooper T, Ofria C (2002) Evolution of stable ecosystems in populations of digital organisms. In: Standish RK, Bedau MA, Abbass HA (eds.), Proc. Artificial Life VIII, pp. 227–232, MIT Press.Google Scholar
  7. 7.
    Darwin C (1859) On the Origin of Species by Means of Natural Selection. Murray.Google Scholar
  8. 8.
    Dawkins R (1986) The Blind Watchmaker. Norton.Google Scholar
  9. 9.
    Dennett D (2002) The New Replicators. In: Pagel M (ed.) Encyclopedia of Evolution, Oxford Univ. Press.Google Scholar
  10. 10.
    Dewdney AK (1984) In a game called core war hostile programs engage in a battle of bits. Scientific American, May issue, pp. 14–22.Google Scholar
  11. 11.
    Domingo E, Biebricher CK, Eigen M, Holland JJ (2001) Quasispecies and RNA Virus Evolution: Principles and Consequences. Landes Bioscience, Georgetown, TX, USA.Google Scholar
  12. 12.
    Drake JW, Holland JJ (1999) Mutation rates among RNA viruses. Proc Natl Acad Sci 96:13910–13913.CrossRefGoogle Scholar
  13. 13.
    Egri-Nagy A, Nehaniv CL (2003) Evolvability of the genotype-phenotype relation in populations of self-replicating digital organisms in a Tierra-like system. Lect Notes Artif Int 2801:238–247.Google Scholar
  14. 14.
    Elena SF, Lenski RE (2003) Evolution experiments with microorganisms: The dynamics and genetic bases of adaptation. Nature Reviews Genetics 4:457–469.CrossRefGoogle Scholar
  15. 15.
    Goldberg DE (2002) The Design of Innovation. Kluwer, Dordecht, Netherlands.Google Scholar
  16. 16.
    Jacob F (1977) Evolution and Tinkering. Science, 196:1161–1166.Google Scholar
  17. 17.
    Kim Y, Stephan W (2003) Selective sweeps in the presence of interference among partially linked loci. Genetics 164:389–398.Google Scholar
  18. 18.
    Koza J (ed.) (2003) Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer, Dordecht, Netherlands.Google Scholar
  19. 19.
    Lenski RE (2004) Phenotypic and genomic evolution during a 20,000-generation experiment with the bacterium, Escherichia coli. Plant Breeding Reviews 24:225–265.MathSciNetGoogle Scholar
  20. 20.
    Lenski RE, Ofria C, Collier TC Adami C (1999) Genome complexity, robustness and genetic interactions in digital organisms. Nature 400:661–664.CrossRefGoogle Scholar
  21. 21.
    Lenski RE, Ofria C, Pennock RT, Adami C (2003) The evolutionary origin of complex features. Nature 423:129–144.CrossRefGoogle Scholar
  22. 22.
    Maynard Smith J (1992) Byte-sized evolution. Nature 355:772–773.CrossRefGoogle Scholar
  23. 23.
    McVean GAT, Charlesworth B (2000) The effects of Hill-Robertson interference between weakly selected mutations on patterns of molecular evolution and variation. Genetics 155:929–944.Google Scholar
  24. 24.
    Morin PJ (2002) Biodiversity’s ups and downs, Nature 406:463–464.Google Scholar
  25. 25.
    Newcomb RD, Campbell PM, Ollis DL, Cheah E, Russell RJ, Oakeshott JG (1997) A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly. Proc Natl Acad Sci 94:7464–7468.CrossRefGoogle Scholar
  26. 26.
    Nilsson D-E and Pelger SA (1994) A pessimistic estimate of the time required for an eye to evolve. Proc R Soc Lond B 256:53–58.Google Scholar
  27. 27.
    Notley-McRobb L, Ferenci T (1999) Adaptive mgl-regulatory mutations and genetic diversity evolving in glucose limited Escherichia coli populations. Env Microbiol 1:33–43.Google Scholar
  28. 28.
    Notley-McRobb L, Ferenci T (1999) The generation of multiple co-existing malregulatory mutations through polygenic evolution in glucose-limited populations of Escherichia coli. Env Microbiol 1:45–52.Google Scholar
  29. 29.
    Ofria C, Wilke CO (2004) Avida: A software platform for research in computational evolutionary biology. Artificial Life 10:191–229.CrossRefGoogle Scholar
  30. 30.
    O’Neill B (2003) Digital evolution. PLoS Biology 1:011–014.Google Scholar
  31. 31.
    Orr HA (2000) The rate of adaptation in asexuals. Genetics 155:961–968.Google Scholar
  32. 32.
    Rainey PB, Travisano M (1998) Adaptive radiation in an heterogeneous environment. Nature 394:69–72.CrossRefGoogle Scholar
  33. 33.
    Rasmussen S, Knudsen C, Feldberg R, Hindsholm M (1990) The coreworld — Emergence and evolution of cooperative structures in a computational chemistry. Physica D 75:1–3.Google Scholar
  34. 34.
    Ray TS (1992) An approach to the synthesis of life. In: Langton CG, Taylor C, Farmer JD, Rasmussen S (eds.). Proc. of Artificial Life II, p. 371. Addison-Wesley.Google Scholar
  35. 35.
    Schluter D (1996) Ecological causes of adaptive radiation, Am Nat 148:s40–s64.CrossRefGoogle Scholar
  36. 36.
    Schluter D (2001) Ecology and the origin of species, Trends Ecol Evol 16:372–379.Google Scholar
  37. 37.
    Tilman D (1982) Resource Competition and Community Structure, Princeton University Press.Google Scholar
  38. 38.
    Tilman D (2000) Causes, consequences and ethics of biodiversity, Nature 405:208–211.CrossRefGoogle Scholar
  39. 39.
    Travisano M, Rainey PB (2000) Studies of adaptive radiation using model microbial systems. Am Nat 156:S35–S44.CrossRefGoogle Scholar
  40. 40.
    Wilke CO (2002) Maternal effects in molecular evolution. Phys Rev Lett 88:078–101.Google Scholar
  41. 41.
    Wilke C, Adami C (2002) The biology of digital organisms. Trends Ecol Evol 17:528–532.CrossRefGoogle Scholar
  42. 42.
    Wilke CO, Adami C (2003) Evolution of mutational robustness. Mutat Res 522:3–1.Google Scholar
  43. 43.
    Wilke CO, Wang JL, Ofria C, Lenski RE, Adami C (2001) Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature 412:331–333.CrossRefGoogle Scholar
  44. 44.
    Wilkins AS (2002) The Evolution of Developmental Pathways, Sinauer.Google Scholar
  45. 45.
    Yedid G, Bell G (2001) Microevolution in an electronic microcosm. Am Nat 157:465–487.CrossRefGoogle Scholar
  46. 46.
    Yedid G, Bell G (2002) Macroevolution simulated with autonomously replicating computer programs. Nature 420:810–812.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2005

Authors and Affiliations

  • Charles Ofria
  • Claus O. Wilke

There are no affiliations available

Personalised recommendations