The Core of Algebra: Reflections on its Main Activities

  • Carolyn Kieran
Part of the New ICMI Study Series book series (NISS, volume 8)


This chapter is Carolyn Kieran’s Plenary Lecture that was presented at the 12th ICMI Study Conference. It presents a model for conceptualising algebraic activity that is a synthesis of three principal activities of school algebra: generational activity, transformational activity, and global/meta-level activity. The model is used as a basis for reflecting on past research in algebra and on the changing perspectives possible, in both algebra classes and future research, in the presence of technology.

Key words

Algebra research generational activity transformational activity global/meta-level activity technique paper-and-pencil algebra computer algebra model of algebraic activity technology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7, 245–274.CrossRefGoogle Scholar
  2. Artigue, M., Defouad, B., Duperier, M., Juge, G., & Lagrange, J.-b. (1998). Intégration de calculatrices complexes dans l’enseignement des mathématiques au lycée]. Paris: Université Denis Didirot Paris 7, Équipe DIDIREM.Google Scholar
  3. Bednarz, N., Kieran, C., & Lee. L. (Eds.). (1996). Approaches to algebra: Perspectives for research and teaching. Dordrecht, The Netherlands: Kluwer Academic.Google Scholar
  4. Bell, A. (1995). Purpose in school algebra. In C. Kieran (Ed.), New perspectives on school algebra: Papers and discussions of the ICME-7 Algebra Working Group (special issue). Journal of Mathematical Behavior, 14, 41–73.Google Scholar
  5. Boero, P. (1993). About the transformation function of the algebraic code. In R. Sutherland (Ed.), Algebraic processes and the role of symbolism (working conference of the ESRC seminar group, pp. 48–55). London: University of London, Institute of Education.Google Scholar
  6. Booth, L. R. (1984). Algebra: Children’s strategies and errors. Windsor, UK: NFER-Nelson.Google Scholar
  7. Cedillo, T. E. (2001). Toward an algebra acquisition support system: A study based on using graphic calculators in the classroom. Mathematical Thinking and Learning, 3(4), 221–259.CrossRefGoogle Scholar
  8. Cedillo, T., & Kieran, C. (2003). Initiating students to algebra with symbol-manipulating calculators. In J. T. Fey (Ed.), Computer algebra systems in school mathematics (pp. 219–240). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  9. Cerulli, M., & Mariotti, M. A. (2001). L’Algebrista: a micro world for symbolic manipulation. In H. Chick, K. Stacey, J. Vincent, & J. Vincent (Eds.), The Future of the Teaching and Learning of Algebra (pp. 179–186). Melbourne, Australia: The University of Melbourne.Google Scholar
  10. Crawford, J. T, (1916). High school algebra. Toronto: Macmillan of Canada.Google Scholar
  11. Defouad, B. (2000). Étude de genèses instrumentales liées à l’utilisation d’une calculatrice symbolique en classe de première S. Thèse de doctorat. Université Paris 7.Google Scholar
  12. Hershkowitz, R., & Kieran, C. (2001). Algorithmic and meaningful ways of joining together representatives within the same mathematical activity: An experience with graphing calculators. In M. van den Heuvel-Panhuizen (Ed.), Proceedings of the 25thannual conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 96–107). Utrecht, The Netherlands: PME Program Committee.Google Scholar
  13. Kieran, C. (1996). The changing face of school algebra. In C. Alsina, J. Alvarez, B. Hodgson, C. Laborde, & A. Pérez (Eds.), 8th International Congress on Mathematical Education: Selected lectures (pp. 271–290). Sevilla, Spain: S.A.E.M. Thales.Google Scholar
  14. Kieran, C., & Wagner, S. (1989). The Research Agenda Conference on algebra: Background and issues. In S. Wagner & C. Kieran (Eds.), Research issues in the learning and teaching of algebra. Reston, VA: NCTM; Hillsdale, NJ: Erlbaum.Google Scholar
  15. Lagrange, J.-b. (1996). Analysing actual use of a computer algebra system in the teaching and learning of mathematics. International DERIVE Journal, 3, 91–108.Google Scholar
  16. Lagrange, J.-b. (2000). L’intégration d’instruments informatiques dans l’enseignement: Une approche par les techniques. Educational Studies in Mathematics, 43, 1–30.CrossRefGoogle Scholar
  17. Lagrange, J.-b. (2003). Learning techniques and concepts using CAS: A practical and theoretical reflection. In J. T. Fey (Ed.), Computer algebra systems in school mathematics (pp. 269–284). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  18. Lee, L. (1997). Algebraic understanding: The search for a model in the mathematics education community. Unpublished doctoral dissertation. Université du Québec à Montréal.Google Scholar
  19. Lee, L., & Wheeler, D. (1987). Algebraic thinking in high school students: Their conceptions of generalisation and justification (research report). Montréal, QC: Concordia University, Mathematics Department.Google Scholar
  20. Love, E. (1986). What is algebra? Mathematics Teaching, 117, 48–50.Google Scholar
  21. Mason, J. (1996). Expressing generality and roots of algebra. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra: Perspectives for research and teaching (pp. 65–86). Dordrecht, The Netherlands: Kluwer.Google Scholar
  22. Mounier, G., & Aldon, G. (1996). A problem story: Factorisations of xn−1. International DERIVE Journal, 3, 51–61.Google Scholar
  23. Sutherland, R. (1990). The changing role of algebra in school mathematics: The potential of computer-based environments. In P. Dowling & R. Noss (Eds.), Mathematics versus the National Curriculum (pp. 154–175). London: Falmer Press.Google Scholar
  24. Sutherland, R. (1997). Teaching and learning algebra pre-19 (report of a Royal Society / JMC Working Group). London: The Royal Society.Google Scholar
  25. Sutherland, R., & Rojano, T. (1993). A spreadsheet approach to solving algebra problems. Journal of Mathematical Behavior, 12, 353–383.Google Scholar
  26. Trouche, L. (1997). À propos de l’apprentissage des limites de fonctions dans un environnement calculatrice, étude des rapports entre processus de conceptualisation et processus d’instrumentation. Thèse de doctorat. Université Montpellier II.Google Scholar
  27. Trouche, L. (2000). La parabole du gaucher et de la casserole à bec verseur: Étude des processus d’apprentissage dans un environnement de calculatrices symboliques. Educational Studies in Mathematics, 41, 239–264.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2004

Authors and Affiliations

  • Carolyn Kieran
    • 1
  1. 1.Université du Québec à MontréalCanada

Personalised recommendations