Nuclear Factor-κB Activation Mediates Cellular Transformation, Proliferation, Invasion Angiogenesis and Metastasis of Cancer

  • Shishir Shishodia
  • Bharat B. Aggarwal
Part of the Cancer Treatment and Research book series (CTAR, volume 119)


Overall these studies clearly demonstrate that NF-κB plays a critical role in tumorigenesis. Similarity, suppression of NF-κB has the ability to inhibit various steps in the tumorigenic process. Design of inhibitors that are pharmacologically safe will be critical for the treatment of cancer. Because of the multiple agents that activate NF-κB through diverse pathways, it is unlikely that any single inhibitor of NF-κB would be effective against all tumors.


Ursolic Acid Betulinic Acid Ataxia Telangiectasia Apical Ectodermal Ridge Cigarette Smoke Condensate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Latchtnan D, Gene regulation: A eukaryotic perspective. Chapman and Hall, London, UK., 1995.Google Scholar
  2. 2.
    Darnell JE, Jr., Transcription factors as targets for cancer therapy. Nat Rev Cancer 2(10): 740–9, 2002.CrossRefPubMedGoogle Scholar
  3. 3.
    Karungaran D and Aggarwal BB, Transcription factors as targets for drug development. In molecular pathomechanisms and new trends in drug research (eds. Drs. Gyorgy Keri and Istvan Toth), Taylor & Francis Publisher: 16–91, 2002.Google Scholar
  4. 4.
    Sen R and Baltimore D, Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell 47(6): 921–8, 1986.CrossRefPubMedGoogle Scholar
  5. 5.
    Gilmore TD, The Rel/NF-kappaB signal transduction pathway: introduction. Oncogene 18(49): 6842–4, 1999.PubMedCrossRefGoogle Scholar
  6. 6.
    Ghosh S, May MJ and Kopp EB, NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16: 225–60, 1998.CrossRefPubMedGoogle Scholar
  7. 7.
    Karin M, How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex. Oncogene 18(49): 6867–74, 1999.CrossRefPubMedGoogle Scholar
  8. 8.
    Li N and Karin M, Ionizing radiation and short wavelength UV activate NF-kappaB through two distinct mechanisms. Proc Natl Acad Sci USA 95(22): 13012–7, 1998.CrossRefPubMedGoogle Scholar
  9. 9.
    Singh S, Darnay BG and Aggarwal BB, Site-specific tyrosine phosphorylation of IkappaBalpha negatively regulates its inducible phosphorylation and degradation. J Biol Chem 271(49): 31049–54, 1996.PubMedCrossRefGoogle Scholar
  10. 10.
    Mayo MW and Baldwin AS, The transcription factor NF-kappaB: control of oncogenesis and cancer therapy resistance. Biochim Biophys Acta 1470(2): M55–62, 2000.PubMedGoogle Scholar
  11. 11.
    Pahl HL, Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18(49): 6853–66, 1999.CrossRefPubMedGoogle Scholar
  12. 12.
    Wang CY, Mayo MW and Baldwin AS, Jr., TNF-and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 274(5288): 784–7, 1996.CrossRefPubMedGoogle Scholar
  13. 13.
    Dejardin E, Droin NM, Delhase M, Haas E, Cao Y, Makris C, Li ZW, Karin M, Ware CF and Green DR, The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 17(4): 525–35, 2002.CrossRefPubMedGoogle Scholar
  14. 14.
    Cao Y, Bonizzi G, Seagroves TN, Greten FR, Johnson R, Schmidt EV and Karin M, IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell 107(6): 763–75, 2001.CrossRefPubMedGoogle Scholar
  15. 15.
    Fan C, Li Q, Ross D and Engelhardt JF, Tyrosine phosphorylation of I kappa B alpha activates NF kappa B through a redox-regulated and c-Src-dependent mechanism following hypoxia/reoxygenation. J Biol Chem 278(3): 2072–80, 2003.CrossRefPubMedGoogle Scholar
  16. 16.
    Palombella VJ, Rando OJ, Goldberg AL and Maniatis T, The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78(5): 773–85, 1994.CrossRefPubMedGoogle Scholar
  17. 17.
    Parcellier A, Schmitt E, Gurbuxani S, Seigneurin-Berny D, Pance A, Chantome A, Plenchette S, Khochbin S, Solary E and Garrido C, HSP27 is a ubiquitin-binding protein involved in I-kappaBalpha proteasomal degradation. Mol Cell Biol 23(16): 5790–802, 2003.CrossRefPubMedGoogle Scholar
  18. 18.
    Garg A and Aggarwal BB, Nuclear transcription factor-kappaB as a target for cancer drug development. Leukemia 16(6): 1053–68, 2002.CrossRefPubMedGoogle Scholar
  19. 19.
    Rosenfeld ME, Prichard L, Shiojiri N and Fausto N, Prevention of hepatic apoptosis and embryonic lethality in RelA/TNFR-1 double knockout mice. Am J Pathol 156(3): 997–1007, 2000.PubMedGoogle Scholar
  20. 20.
    Alcamo E, Hacohen N, Schulte LC, Rennert PD, Hynes RO and Baltimore D, Requirement for the NF-kappaB family member RelA in the development of secondary lymphoid organs. J Exp Med 195(2): 233–44, 2002.CrossRefPubMedGoogle Scholar
  21. 21.
    Beg AA, Sha WC, Bronson RT, Ghosh S and Baltimore D, Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 376(6536): 167–70, 1995.CrossRefPubMedGoogle Scholar
  22. 22.
    MacMicking JD, Nathan C, Hom G, Chartrain N, Fletcher DS, Trumbauer M, Stevens K, Xie QW, Sokol K, Hutchinson N and et al., Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81(4): 641–50, 1995.CrossRefPubMedGoogle Scholar
  23. 23.
    Behl PN, Vitiligo: treatment by dermabrasion and epithelial sheet grafting. J Am Acad Dermatol 30(6): 1044–5, 1994.PubMedCrossRefGoogle Scholar
  24. 24.
    Pahl HL and Baeuerle PA, A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF-kappa B. Embo J 14(11): 2580–8, 1995.PubMedGoogle Scholar
  25. 25.
    Berliner JA, Navab M, Fogelman AM, Frank JS, Demer LL, Edwards PA, Watson AD and Lusis AJ, Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation 91(9): 2488–96, 1995.PubMedGoogle Scholar
  26. 26.
    Liao F, Andalibi A, Qiao JH, Allayee H, Fogelman AM and Lusis AJ, Genetic evidence for a common pathway mediating oxidative stress, inflammatory gene induction, and aortic fatty streak formation in mice. J Clin Invest 94(2): 877–84, 1994.PubMedCrossRefGoogle Scholar
  27. 27.
    Nakajima T, Kitajima I, Shin H, Takasaki I, Shigeta K, Abeyama K, Yamashita Y, Tokioka T, Soejima Y and Maruyama I, Involvement of NF-kappa B activation in thrombin-induced human vascular smooth muscle cell proliferation. Biochem Biophys Res Commun 204(2): 950–8, 1994.CrossRefPubMedGoogle Scholar
  28. 28.
    Jung M, Zhang Y, Lee S and Dritschilo A, Correction of radiation sensitivity in ataxia telangiectasia cells by a truncated I kappa B-alpha. Science 268(5217): 1619–21, 1995.PubMedCrossRefGoogle Scholar
  29. 29.
    Luque I and Gelinas C, Rel/NF-kappa B and I kappa B factors in oncogenesis. Semin Cancer Biol 8(2): 103–11, 1997.CrossRefPubMedGoogle Scholar
  30. 30.
    Houldsworth J, Mathew S, Rao PH, Dyomina K, Louie DC, Parsa N, Offit K and Chaganti RS, REL proto-oncogene is frequently amplified in extranodal diffuse large cell lymphoma. Blood 87(1): 25–9, 1996.PubMedGoogle Scholar
  31. 31.
    Lu D, Thompson JD, Gorski GK, Rice NR, Mayer MG and Yunis JJ, Alterations at the rel locus in human lymphoma. Oncogene 6(7): 1235–41, 1991.PubMedGoogle Scholar
  32. 32.
    Mukhopadhyay T, Roth JA and Maxwell SA, Altered expression of the p50 subunit of the NF-kappa B transcription factor complex in non-small cell lung carcinoma. Oncogene 11(5): 999–1003, 1995.PubMedGoogle Scholar
  33. 33.
    Mathew S, Murty VV, Dalla-Favera R and Chaganti RS, Chromosomal localization of genes encoding the transcription factors, c-rel, NF-kappa Bp50, NF-kappa Bp65, and lyt-10 by fluorescence in situ hybridization. Oncogene 8(1): 191–3, 1993.PubMedGoogle Scholar
  34. 34.
    Wang CY, Guttridge DC, Mayo MW and Baldwin AS, Jr., NF-kappaB induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis. Mol Cell Biol 19(9): 5923–9, 1999.PubMedGoogle Scholar
  35. 35.
    Visconti R, Cerutti J, Battista S, Fedele M, Trapasso F, Zeki K, Miano MP, de Nigris F, Casalino L, Curcio F, Santoro M and Fusco A, Expression of the neoplastic phenotype by human thyroid carcinoma cell lines requires NFkappaB p65 protein expression. Oncogene 15(16): 1987–94, 1997.CrossRefPubMedGoogle Scholar
  36. 36.
    Trecca D, Guerrini L, Fracchiolla NS, Pomati M, Baldini L, Maiolo AT and Neri A, Identification of a tumor-associated mutant form of the NF-kappaB RelA gene with reduced DNA-binding and transactivating activities. Oncogene 14(7): 791–9, 1997.CrossRefPubMedGoogle Scholar
  37. 37.
    Baldwin AS, Jr., The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14:649–83, 1996.CrossRefPubMedGoogle Scholar
  38. 38.
    Cabannes E, Khan G, Aillet F, Jarrett RF and Hay RT, Mutations in the IkBa gene in Hodgkin’s disease suggest a tumour suppressor role for IkappaBalpha. Oncogene 18(20): 3063–70, 1999.CrossRefPubMedGoogle Scholar
  39. 39.
    Beauparlant P, Kwan I, Bitar R, Chou P, Koromilas AE, Sonenberg N and Hiscott J, Disruption of I kappa B alpha regulation by antisense RNA expression leads to malignant transformation. Oncogene 9(11): 3189–97, 1994.PubMedGoogle Scholar
  40. 40.
    Kitajima I, Shinohara T, Bilakovics J, Brown DA, Xu X and Nerenberg M, Ablation of transplanted HTLV-I Tax-transformed tumors in mice by antisense inhibition of NF-kappa B. Science 258(5089): 1792–5, 1992.PubMedCrossRefGoogle Scholar
  41. 41.
    Liptay S, Schmid RM, Perkins ND, Meltzer P, Altherr MR, McPherson JD, Wasmuth JJ and Nabel GJ, Related subunits of NF-kappa B map to two distinct loci associated with translocations in leukemia, NFKB1 and NFKB2. Genomics 13(2): 287–92, 1992.CrossRefPubMedGoogle Scholar
  42. 42.
    Ferrier R, Nougarede R, Doucet S, Kahn-Perles B, Imbert J and Mathieu-Mahul D, Physical interaction of the bHLH LYL1 protein and NF-kappaB1 p105. Oncogene 18(4): 995–1005, 1999.CrossRefPubMedGoogle Scholar
  43. 43.
    Motokura T and Arnold A, PRAD1/cyclin D1 proto-oncogene: genomic organization, 5’ DNA sequence, and sequence of a tumor-specific rearrangement breakpoint. Genes Chromosomes Cancer 7(2): 89–95, 1993.PubMedCrossRefGoogle Scholar
  44. 44.
    Nakshatri H, Bhat-Nakshatri P, Martin DA, Goulet RJ, Jr. and Sledge GW, Jr., Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol Cell Biol 17(7): 3629–39, 1997.PubMedGoogle Scholar
  45. 45.
    Fracchiolla NS, Lombardi L, Salina M, Migliazza A, Baldini L, Berti E, Cro L, Polli E, Maiolo AT and Neri A, Structural alterations of the NF-kappa B transcription factor lyt-10 in lymphoid malignancies. Oncogene 8(10): 2839–45, 1993.PubMedGoogle Scholar
  46. 46.
    Dejardin E, Bonizzi G, Bellahcene A, Castronovo V, Merville MP and Bours V, Highly-expressed p100/p52 (NFKB2) sequesters other NF-kappa B-related proteins in the cytoplasm of human breast cancer cells. Oncogene 11(9): 1835–41, 1995.PubMedGoogle Scholar
  47. 47.
    Revilla Y, Callejo M, Rodriguez JM, Culebras E, Nogal ML, Salas ML, Vinuela E and Fresno M, Inhibition of nuclear factor kappaB activation by a virus-encoded IkappaB-like protein. J Biol Chem 273(9): 5405–11, 1998.CrossRefPubMedGoogle Scholar
  48. 48.
    Rayet B and Gelinas C, Aberrant rel/nfkb genes and activity in human cancer. Oncogene 18(49): 6938–47, 1999.CrossRefPubMedGoogle Scholar
  49. 49.
    Nair A, Venkatraman M, Maliekal TT, Nair B and Karunagaran D, NF-kappaB is constitutively activated in high-grade squamous intraepithelial lesions and squamous cell carcinomas of the human uterine cervix. Oncogene 22(1): 50–8, 2003.CrossRefPubMedGoogle Scholar
  50. 50.
    Oya M, Takayanagi A, Horiguchi A, Mizuno R, Ohtsubo M, Marumo K, Shimizu N and Murai M, Increased nuclear factor-kappa B activation is related to the tumor development of renal cell carcinoma. Carcinogenesis 24(3): 377–84, 2003.CrossRefPubMedGoogle Scholar
  51. 51.
    Yu HG, Yu LL, Yang Y, Luo HS, Yu JP, Meier JJ, Schrader H, Bastian A, Schmidt WE and Schmitz F, Increased expression of RelA/nuclear factor-kappa B protein correlates with colorectal tumorigenesis. Oncology 65(1): 37–45, 2003.CrossRefPubMedGoogle Scholar
  52. 52.
    Banerjee S, Bueso-Ramos C and Aggarwal BB, Suppression of 7, 12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: role of nuclear factor-kappaB, cyclooxygenase 2, and matrix metalloprotease 9. Cancer Res 62(17): 4945–54, 2002.PubMedGoogle Scholar
  53. 53.
    Shishodia S, Potdar P, Gairola CG and Aggarwal BB, Curcumin (diferuloylmethane) down-regulates cigarette smoke-induced NF-kappaB activation through inhibition of IkappaBalpha kinase in human lung epithelial cells: correlation with suppression of COX-2, MMP-9 and cyclin D1. Carcinogenesis 24(7): 1269–79, 2003.CrossRefPubMedGoogle Scholar
  54. 54.
    Anto RJ, Mukhopadhyay A, Shishodia S, Gairola CG and Aggarwal BB, Cigarette smoke condensate activates nuclear transcription factor-kappaB through phosphorylation and degradation of IkappaB(alpha): correlation with induction of cyclooxygenase-2. Carcinogenesis 23(9): 1511–8, 2002.CrossRefPubMedGoogle Scholar
  55. 55.
    Shishodia S, Majumdar S, Banerjee S and Aggarwal BB, Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Res 63(15): 4375–83, 2003.PubMedGoogle Scholar
  56. 56.
    Koong AC, Chen EY and Giaccia AJ, Hypoxia causes the activation of nuclear factor kappa B through the phosphorylation of I kappa B alpha on tyrosine residues. Cancer Res 54(6): 1425–30, 1994.PubMedGoogle Scholar
  57. 57.
    Schutze S, Potthoff K, Machleidt T, Berkovic D, Wiegmann K and Kronke M, TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell 71(5): 765–76, 1992.CrossRefPubMedGoogle Scholar
  58. 58.
    Aggarwal BB, Tumour necrosis factors receptor associated s`gnalling molecules and their role in activation of apoptosis, JNK and NF-kappaB. Ann Rheum Dis 59 Suppl 1: i6-16, 2000.PubMedGoogle Scholar
  59. 59.
    Komori A, Yatsunami J, Suganuma M, Okabe S, Abe S, Sakai A, Sasaki K and Fujiki H, Tumor necrosis factor acts as a tumor promoter in BALB/3T3 cell transformation. Cancer Res 53(9): 1982–5, 1993.PubMedGoogle Scholar
  60. 60.
    Suganuma M, Okabe S, Marino MW, Sakai A, Sueoka E and Fujiki H, Essential role of tumor necrosis factor alpha (TNF-alpha) in tumor promotion as revealed by TNF-alpha-deficient mice. Cancer Res 59(18): 4516–8, 1999.PubMedGoogle Scholar
  61. 61.
    Hafner M, Orosz P, Kruger A and Mannel DN, TNF promotes metastasis by impairing natural killer cell activity. Int J Cancer 66(3): 388–92, 1996.CrossRefPubMedGoogle Scholar
  62. 62.
    Moore RJ, Owens DM, Stamp G, Arnott C, Burke F, East N, Holdsworth H, Turner L, Rollins B, Pasparakis M, Kollias G and Balkwill F, Mice deficient in tumorn ecrosis factor-alpha are resistant to skin carcinogenesis. Nat Med 5(7): 828–31, 1999.CrossRefPubMedGoogle Scholar
  63. 63.
    Giri DK and Aggarwal BB, Constitutive activation of NF-kappaB causes resistance to apoptosis in human cutaneous T cell lymphoma HuT-78 cells. Autocrine role of tumor necrosis factor and reactive oxygen intermediates. J Biol Chem 273(22): 14008–14, 1998.CrossRefPubMedGoogle Scholar
  64. 64.
    Arnott CH, Scott KA, Moore RJ, Hewer A, Phillips DH, Parker P, Balkwill FR and Owens DM, Tumour necrosis factor-alpha mediates tumour promotion via a PKC alpha-and AP-1-dependent pathway. Oncogene 21(31): 4728–38, 2002.CrossRefPubMedGoogle Scholar
  65. 65.
    Hehlgans T, Stoelcker B, Stopfer P, Muller P, Cernaianu G, Guba M, Steinbauer M, Nedospasov SA, Pfeffer K and Mannel DN, Lymphotoxin-beta receptor immune interaction promotes tumor growth by inducing angiogenesis. Cancer Res 62(14): 4034–40, 2002.PubMedGoogle Scholar
  66. 66.
    Ashikawa K, Shishodia S, Fokt I, Priebe W and Aggarwal BB, Evidence That Activation of Nuclear Factor-kappa B Is Essential for Doxorubicin-Induced Cell Death in Myeloid and Lymphoid Cells. Bochemical Pharmacology In press, 2003.Google Scholar
  67. 67.
    Singh S, Raju U, Mendoza J, Pantazis P and Aggarwal BB, Acquisition of cellular resistance to 9-nitro-camptothecin correlates with suppression of transcription factor NF-kappa B activation and potentiation of cytotoxicity by tumor necrosis factor in human histiocytic lymphoma U-937 cells. Anticancer Drugs 9(8): 703–14, 1998.PubMedCrossRefGoogle Scholar
  68. 68.
    Arlt A, Gehrz A, Muerkoster S, Vorndamm J, Kruse ML, Folsch UR and Schafer H, Role of NF-kappaB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene 22(21): 3243–51, 2003.PubMedCrossRefGoogle Scholar
  69. 69.
    Hwang S and Ding A, Activation of NF-kappa B in murine macrophages by taxol. Cancer Biochem Biophys 14(4): 265–72, 1995.PubMedGoogle Scholar
  70. 70.
    Donepudi M, Raychaudhuri P, Bluestone JA and Mokyr MB, Mechanism of melphalaninduced B7-1 gene expression in P815 tumor cells. J Immunol 166(11): 6491–9, 2001.PubMedGoogle Scholar
  71. 71.
    Galter D, Mihm S and Droge W, Distinct effects of glutathione disulphide on the nuclear transcription factor kappa B and the activator protein-1. Eur J Biochem 221(2): 639–48, 1994.CrossRefPubMedGoogle Scholar
  72. 72.
    Brach MA, Hass R, Sherman ML, Gunji H, Weichselbaum R and Kufe D, Ionizing radiation induces expression and binding activity of the nuclear factor kappa B. J Clin Invest 88(2): 691–5, 1991.PubMedCrossRefGoogle Scholar
  73. 73.
    Wang CY, Cusack JC, Jr., Liu R and Baldwin AS, Jr., Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB. Nat Med 5(4): 412–7, 1999.PubMedCrossRefGoogle Scholar
  74. 74.
    Chen X, Shen B, Xia L, Khaletzkiy A, Chu D, Wong JY and Li JJ, Activation of nuclear factor kappaB in radioresistance of TP53-inactive human keratinocytes. Cancer Res 62(4): 1213–21, 2002.PubMedGoogle Scholar
  75. 75.
    Zhang Q, Siebert R, Van M, Hinzmann B, Cui X, Xue L, Rakestraw KM, Naeve CW, Beckmann G, Weisenburger DD, Sanger WG, Nowotny H, Vesely M, Callet-Bauchu E, Salles G, Dixit VM, Rosenthal A, Schlegelberger B and Morris SW, Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22;q32). Nat Genet 22(1): 63–8, 1999.PubMedCrossRefGoogle Scholar
  76. 76.
    Finco TS and Baldwin AS, Jr., Kappa B site-dependent induction of gene expression by diverse inducers of nuclear factor kappa B requires Raf-1. J Biol Chem 268(24): 17676–9, 1993.PubMedGoogle Scholar
  77. 77.
    Hamdane M, David-Cordonnier MH and D’Halluin JC, Activation of p65 NF-kappaB protein by p210BCR-ABL in a myeloid cell line (P210BCR-ABL activates p65 NF-kappaB). Oncogene 15(19): 2267–75, 1997.CrossRefPubMedGoogle Scholar
  78. 78.
    Duyao MP, Kessler DJ, Spicer DB, Bartholomew C, Cleveland JL, Siekevitz M and Sonenshein GE, Transactivation of the c-myc promoter by human T cell leukemia virus type 1 tax is mediated by NF kappa B. J Biol Chem 267(23): 16288–91, 1992.PubMedGoogle Scholar
  79. 79.
    Finco TS, Westwick JK, Norris JL, Beg AA, Der CJ and Baldwin AS, Jr., Oncogenic Ha-Ras-induced signaling activates NF-kappaB transcriptional activity, which is required for cellular transformation. J Biol Chem 272(39): 24113–6, 1997.CrossRefPubMedGoogle Scholar
  80. 80.
    Norris JL and Baldwin AS, Jr., Oncogenic Ras enhances NF-kappaB transcriptional activity through Raf-dependent and Raf-independent mitogen-activated protein kinase signaling pathways. J Biol Chem 274(20): 13841–6, 1999.CrossRefPubMedGoogle Scholar
  81. 81.
    Mayo MW, Norris JL and Baldwin AS, Ras regulation of NF-kappa B and apoptosis. Methods Enzymol 333: 73–87, 2001.PubMedCrossRefGoogle Scholar
  82. 82.
    Balmain A and Pragnell IB, Mouse skin carcinomas induced in vivo by chemical carcinogens have a transforming Harvey-ras oncogene. Nature 303(5912): 72–4, 1983.CrossRefGoogle Scholar
  83. 83.
    Lu Y, Jamieson L, Brasier AR and Fields AP, NF-kappaB/RelA transactivation is required for atypical protein kinase C iota-mediated cell survival. Oncogene 20(35): 4777–92, 2001.CrossRefPubMedGoogle Scholar
  84. 84.
    Libermann TA and Baltimore D, Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol 10(5): 2327–34, 1990.PubMedGoogle Scholar
  85. 85.
    Aggarwal BB, Schwarz L, Hogan ME and Rando RF, Triple helix-forming oligodeoxyribonucleotides targeted to the human tumor necrosis factor (TNF) gene inhibit TNF production and block the TNF-dependent growth of human glioblastoma tumor cells. Cancer Res 56(22): 5156–64, 1996.PubMedGoogle Scholar
  86. 86.
    Estrov Z, Thall PF, Talpaz M, Estey EH, Kantarjian HM, Andreeff M, Harris D, Van Q, Walterscheid M and Kornblau SM, Caspase 2 and caspase 3 protein levels as predictors of survival in acute myelogenous leukemia. Blood 92(9): 3090–7, 1998.PubMedGoogle Scholar
  87. 87.
    Bharti AC, Donato N, Singh S and Aggarwal BB, Curcumin (diferuloylmethane) downregulates the constitutive activation of nuclear factor-kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 101(3): 1053–62, 2003.CrossRefPubMedGoogle Scholar
  88. 88.
    Kato T, Duffey DC, Ondrey FG, Dong G, Chen Z, Cook JA, Mitchell JB and Van Waes C, Cisplatin and radiation sensitivity in humanhead and neck squamous carcinomas are independently modulated by glutathione and transcription factor NF-kappaB. Head Neck 22(8): 748–59, 2000.CrossRefPubMedGoogle Scholar
  89. 89.
    Mukhopadhyay A, Banerjee S, Stafford LJ, Xia C, Liu M and Aggarwal BB, Curcumin-induced suppression of cell proliferation correlates with down-regulation of cyclin D1 expression and CDK4-mediated retinoblastoma protein phosphorylation. Oncogene 21(57): 8852–61, 2002.CrossRefPubMedGoogle Scholar
  90. 90.
    Yamamoto K, Arakawa T, Ueda N and Yamamoto S, Transcriptional roles of nuclear factor kappa B and nuclear factor-interleukin-6 in the tumor necrosis factor alpha-dependent induction of cyclooxygenase-2 in MC3T3-E1 cells. J Biol Chem 270(52): 31315–20, 1995.PubMedCrossRefGoogle Scholar
  91. 91.
    Bargou RC, Emmerich F, Krappmann D, Bommert K, Mapara MY, Arnold W, Royer HD, Grinstein E, Greiner A, Scheidereit C and Dorken B, Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin—s disease tumor cells. J clin Invest 100(12): 2961–9, 1997.PubMedCrossRefGoogle Scholar
  92. 92.
    Romashkova JA and Makarov SS, NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401(6748): 86–90, 1999.PubMedCrossRefGoogle Scholar
  93. 93.
    Habib AA, Chatterjee S, Park SK, Ratan RR, Lefebvre S and Vartanian T, The epidermal growth factor receptor engages receptor interacting protein and nuclear factor-kappa B (NF-kappa B)-inducing kinase to activate NF-kappa B. Identification of a novel receptor-tyrosine kinase signalosome. J Biol Chem 276(12): 8865–74, 2001.CrossRefPubMedGoogle Scholar
  94. 94.
    Foehr ED, Lin X, O’Mahony A, Geleziunas R, Bradshaw RA and Greene WC, NF-kappa B signaling promotes both cell survival and neurite process formation in nerve growth factor-stimulated PC12 cells. J Neurosci 20(20): 7556–63, 2000.PubMedGoogle Scholar
  95. 95.
    Shishodia S and Aggarwal BB, Nuclear factor-kappa B activation: A question of life and death. J. Biochem. Mol. Biol. 35(1): 28–40, 2002.PubMedGoogle Scholar
  96. 96.
    Kawamura K, Sato N, Fukuda J, Kodama H, Kumagai J, Tanikawa H, Shimizu Y and Tanaka T, Survivin acts as an antiapoptotic factor during the development of mouse preimplantation embryos. Dev Biol 256(2): 331–41, 2003.CrossRefPubMedGoogle Scholar
  97. 97.
    Matta H, Eby MT, Gazdar AF and Chaudhary PM, Role of MRIT/cFLIP in protection against chemotherapy-induced apoptosis. Cancer Biol Ther 1(6): 652–60, 2002.PubMedGoogle Scholar
  98. 98.
    Farina AR, Tacconelli A, Vacca A, Maroder M, Gulino A and Mackay AR, Transcriptional up-regulation of matrix metalloproteinase-9 expression during spontaneous epithelial to neuroblast phenotype conversion by SK-N-SH neuroblastoma cells, involved in enhanced invasivity, depends upon GT-box and nuclear factor kappaB elements. Cell Growth Differ 10(5): 353–67, 1999.PubMedGoogle Scholar
  99. 99.
    Bond M, Fabunmi RP, Baker AH and Newby AC, Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-kappa B. FEBS Lett 435(1): 29–34, 1998.CrossRefPubMedGoogle Scholar
  100. 100.
    Novak U, Cocks BG and Hamilton JA, A labile repressor acts through the NFkB-like binding sites of the human urokinase gene. Nucleic Acids Res 19(12): 3389–93, 1991.PubMedCrossRefGoogle Scholar
  101. 101.
    Wang W, Abbruzzese JL, Evans DB and Chiao PJ, Overexpression of urokinase-type plasminogen activator in pancreatic adenocarcinoma is regulated by constitutively activated RelA. Oncogene 18(32): 4554–63, 1999.CrossRefPubMedGoogle Scholar
  102. 102.
    Sliva D, English D, Lyons D and Lloyd FP, Jr., Protein kinase C induces motility of breast cancers by upregulating secretion of urokinase-type plasminogen activator through activation of AP-1 and NF-kappaB. Biochem Biophys Res Commun 290(1): 552–7, 2002.CrossRefPubMedGoogle Scholar
  103. 103.
    Mahabeleshwar GH and Kundu GC, Syk, a protein-tyrosine kinase, suppresses the cell motility and nuclear factor kappa B-mediated secretion of urokinase type plasminogen activator by inhibiting the phosphatidylinositol 3’-kinase activity in breast cancer cells. J Biol Chem 278(8): 6209–21, 2003.CrossRefPubMedGoogle Scholar
  104. 104.
    Loch T, Michalski B, Mazurek U and Graniczka M, [Vascular endothelial growth factor (VEGF) and its role in neoplastic processes]. Postepy Hig Med Dosw 55(2): 257–74, 2001.PubMedGoogle Scholar
  105. 105.
    Chilov D, Kukk E, Taira S, Jeltsch M, Kaukonen J, Palotie A, Joukov V and Alitalo K, Genomic organization of human and mouse genes for vascular endothelial growth factor C. J Biol Chem 272(40): 25176–83, 1997.CrossRefGoogle Scholar
  106. 106.
    Levine L, Lucci JA, 3rd, Pazdrak B, Cheng JZ, Guo YS, Townsend CM, Jr. and Hellmich MR, Bombesin stimulates nuclear factor kappa B activation and expression of proangiogenic factors in prostate cancer cells. Cancer Res 63(13): 3495–502, 2003.PubMedGoogle Scholar
  107. 107.
    Huang S, DeGuzman A, Bucana CD and Fidler U, Nuclear factor-kappaB activity correlates with growth, angiogenesis, and metastasis of human melanoma cells in nude mice. Clin Cancer Res 6(6): 2573–81, 2000.PubMedGoogle Scholar
  108. 108.
    Pollet I, Opina CJ, Zimmerman C, Leong KG, Wong F and Karsan A, Bacterial lipopolysaccharide directly induces angiogenesis through TRAF6-mediated activation of NF-kappaB and c-Jun N-terminal kinase. Blood 102(5): 1740–2, 2003.CrossRefPubMedGoogle Scholar
  109. 109.
    van de Stolpe A, Caldenhoven E, Stade BG, Koenderman L, Raaijmakers JA, Johnson JP and van der Saag PT, 12-O-tetradecanoylphorbol-13-acetate-and tumor necrosis factor alpha-mediated induction of intercellular adhesion molecule-1 is inhibited by dexamethasone. Functional analysis of the human intercellular adhesion molecular-1 promoter. J Biol Chem 269(8): 6185–92, 1994.PubMedGoogle Scholar
  110. 110.
    Helbig G, Christopherson KW, 2nd, Bhat-Nakshatri P, Kumar S, Kishimoto H, Miller KD, Broxmeyer HE and Nakshatri H, NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem 278(24): 21631–8, 2003.CrossRefPubMedGoogle Scholar
  111. 111.
    Fujioka S, Sclabas GM, Schmidt C, Frederick WA, Dong QG, Abbruzzese JL, Evans DB, Baker C and Chiao PJ, Function of nuclear factor kappaB in pancreatic cancer metastasis. Clin Cancer Res 9(1): 346–54, 2003.PubMedGoogle Scholar
  112. 112.
    Darnay BG, Haridas V, Ni J, Moore PA and Aggarwal BB, Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappab and c-Jun N-terminal kinase. J Biol Chem 273(32): 20551–5, 1998.CrossRefPubMedGoogle Scholar
  113. 113.
    Iotsova V, Caamano J, Loy J, Yang Y, Lewin A and Bravo R, Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 3(11): 1285–9, 1997.CrossRefPubMedGoogle Scholar
  114. 114.
    Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD, Leonardi A, Tran T, Boyce BF and Siebenlist U, Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 11(24): 3482–96, 1997.PubMedCrossRefGoogle Scholar
  115. 115.
    Bushdid PB, Brantley DM, Yull FE, Blaeuer GL, Hoffman LH, Niswander L and Kerr LD, Inhibition of NF-kappaB activity results in disruption of the apical ectodermal ridge and aberrant limb morphogenesis. Nature 392(6676): 615–8, 1998.PubMedCrossRefGoogle Scholar
  116. 116.
    Yao Z, Zhang J, Dai J and Keller ET, Ethanol activates NFkappaB DNA binding and p56lck protein tyrosine kinase in human osteoblast-like cells. Bone 28(2): 167–73, 2001.CrossRefPubMedGoogle Scholar
  117. 117.
    Andela VB, Sheu TJ, Puzas EJ, Schwarz EM, O’Keefe RJ and Rosier RN, Malignant reversion of a human osteosarcoma cell line, Saos-2, by inhibition of NFkappaB. Biochem Biophys Res Commun 297(2): 237–41, 2002.CrossRefPubMedGoogle Scholar
  118. 118.
    Koul D, Yao Y, Abbruzzese JL, Yung WK and Reddy SA, Tumor suppressor MMAC/PTEN inhibits cytokine-induced NFkappaBactivation without interfering with the IkappaB degradation pathway. J Biol Chem 276(14): 11402–8, 2001.CrossRefPubMedGoogle Scholar
  119. 119.
    Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A and Mosialos G, CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 424(6950): 793–6, 2003.CrossRefPubMedGoogle Scholar
  120. 120.
    Brummelkamp TR, Nijman SM, Dirac AM and Bernards R, Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 424(6950): 797–801, 2003.CrossRefPubMedGoogle Scholar
  121. 121.
    Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D and Courtois G, The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 424(6950): 801–5, 2003.CrossRefPubMedGoogle Scholar
  122. 122.
    Rocha S, Martin AM, Meek DW and Perkins ND, p53 represses cyclin D1 transcription through down regulation of Bcl-3 and inducing increased association of the p52 NF-kappaB subunit with histone deacetylase 1. Mol Cell Biol 23(13): 4713–27, 2003.CrossRefPubMedGoogle Scholar
  123. 123.
    Mayo MW, Madrid LV, Westerheide SD, Jones DR, Yuan XJ, Baldwin AS, Jr. and Whang YE, PTEN blocks tumor necrosis factor-induced NF-kappa B-dependent transcription by inhibiting the transactivation potential of the p65 subunit. J Biol Chem 277(13): 11116–25, 2002.CrossRefPubMedGoogle Scholar
  124. 124.
    Martin AM, Kanetsky PA, Amirimani B, Colligon TA, Athanasiadis G, Shih HA, Gerrero MR, Calzone K, Rebbeck TR and Weber BL, Germline TP53 mutations in breast cancer families with multiple primary cancers: is TP53 a modifier of BRCA1? J Med Genet 40(4): e34, 2003.CrossRefPubMedGoogle Scholar
  125. 125.
    Bentires-Alj M, Hellin AC, Ameyar M, Chouaib S, Merville MP and Bours V, Stable inhibition of nuclear factor kappaB in cancer cells does not increase sensitivity to cytotoxic drugs. Cancer Res 59(4): 811–5, 1999.PubMedGoogle Scholar
  126. 126.
    Natarajan K, Singh S, Burke TR, Jr., Grunberger D and Aggarwal BB, Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappaB. Proc Natl Acad Sci U S A 93(17): 9090–5, 1996.CrossRefPubMedGoogle Scholar
  127. 127.
    Bharti AC and Aggarwal BB, Nuclear factor-kappa B and cancer: its role in prevention and therapy. Biochem Pharmacol 64(5-6): 883–8, 2002.CrossRefPubMedGoogle Scholar
  128. 128.
    Manna SK, Mukhopadhyay A and Aggarwal BB, Leflunomide suppresses TNF-induced cellular responses: effects on NF-kappa B, activator protein-1, c-Jun N-terminal protein kinase, and apoptosis. J Immunol 165(10): 5962–9, 2000.PubMedGoogle Scholar
  129. 129.
    Wang P, Wu P, Siegel MI, Egan RW and Billah MM, Interleukin (IL)-10 inhibits nuclear factor kappa B (NF kappa B) activation in human monocytes. IL-10 and IL-4 suppress cytokine synthesis by different mechanisms. J Biol Chem 270(16): 9558–63, 1995.PubMedCrossRefGoogle Scholar
  130. 130.
    Manna SK, Mukhopadhyay A and Aggarwal BB, Human chorionic gonadotropin suppresses activation of nuclear transcription factor-kappa B and activator protein-1 induced by tumor necrosis factor. J Biol Chem 275(18): 13307–14, 2000.PubMedCrossRefGoogle Scholar
  131. 131.
    Manna SK and Aggarwal BB, Alpha-melanocyte-stimulating hormone inhibits the nuclear transcription factor NF-kappa B activation induced by various inflammatory agents. J Immunol 161(6): 2873–80, 1998.PubMedGoogle Scholar
  132. 132.
    Haeffner A, Thieblemont N, Deas O, Marelli O, Charpentier B, Senik A, Wright SD, Haeffner-Cavaillon N and Hirsch F, Inhibitory effect of growth hormone on TNF-alpha secretion and nuclear factor-kappaB translocation in lipopolysaccharide-stimulated human monocytes. J Immunol 158(3): 1310–4, 1997.PubMedGoogle Scholar
  133. 133.
    Manna SK, Mukhopadhyay A and Aggarwal BB, IFN-alpha suppressesactivation of nuclear transcription factors NF-kappa B and activator protein 1 and potentiates TNF-induced apoptosis. J Immunol 165(9): 4927–34, 2000.PubMedGoogle Scholar
  134. 134.
    Ehrlich LC, Hu S, Sheng WS, Sutton RL, Rockswold GL, Peterson PK and Chao CC, Cytokine regulation of human microglial cell IL-8 production. J Immunol 160(4): 1944–8, 1998.PubMedGoogle Scholar
  135. 135.
    Hideshima T, Chauhan D, Schlossman R, Richardson P and Anderson KC, The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene 20(33): 4519–27, 2001.CrossRefPubMedGoogle Scholar
  136. 136.
    Fiedler MA, Wernke-Dollries K and Stark JM, Inhibition of TNF-alpha-induced NF-kappaB activation and IL-8 release in A549 cells with the proteasome inhibitor MG-132. Am J Respir Cell Mol Biol 19(2): 259–68, 1998.PubMedGoogle Scholar
  137. 137.
    Page S, Fischer C, Baumgartner B, Haas M, Kreusel U, Loidl G, Hayn M, Ziegler-Heitbrock HW, Neumeier D and Brand K, 4-Hydroxynonenal prevents NF-kappaB activation and tumor necrosis factor expression by inhibiting IkappaB phosphorylation and subsequent proteolysis. J Biol Chem 274(17): 11611–8, 1999.CrossRefPubMedGoogle Scholar
  138. 138.
    Ji C, Kozak KR and Marnett LJ, IkappaB kinase, a molecular target for inhibition by 4-hydroxy-2-nonenal. J Biol Chem 276(21): 18223–8, 2001.CrossRefPubMedGoogle Scholar
  139. 139.
    Castro AC, Dang LC, Soucy F, Grenier L, Mazdiyasni H, Hottelet M, Parent L, Pien C, Palombella V and Adams J, Novel IKK inhibitors: beta-carbolines. Bioorg Med Chem Lett 13(14): 2419–22, 2003.CrossRefPubMedGoogle Scholar
  140. 140.
    Kishore N, Sommers C, Mathialagan S, Guzova J, Yao M, Hauser S, Huynh K, Bonar S, Mielke C, Albee L, Weier R, Graneto M, Hanau C, Perry T and Tripp CS, A selective IKK-2 inhibitor blocks NF-kappa B-dependent gene expression in interleukin-1 beta-stimulated synovial fibroblasts. J Biol Chem 278(35): 32861–71, 2003.CrossRefPubMedGoogle Scholar
  141. 141.
    Burke JR, Pattoli MA, Gregor KR, Brassil PJ, MacMaster JF, McIntyre KW, Yang X, Iotzova VS, Clarke W, Strnad J, Qiu Y and Zusi FC, BMS-345541 is a highly selective inhibitor of I kappa B kinase that binds at an allosteric site of the enzyme and blocks NF-kappa B-dependent transcription in mice. J Biol Chem 278(3): 1450–6, 2003.CrossRefPubMedGoogle Scholar
  142. 142.
    Chen L, Fischle W, Verdin E and Greene WC, Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 293(5535): 1653–7, 2001.CrossRefGoogle Scholar
  143. 143.
    Abu-Amer Y, Dowdy SF, Ross FP, Clohisy JC and Teitelbaum SL, TAT fusion proteins containing tyrosine 42-deleted IkappaBalpha arrest osteoclastogenesis. J Biol Chem 276(32): 30499–503, 2001.CrossRefPubMedGoogle Scholar
  144. 144.
    Higgins KA, Perez JR, Coleman TA, Dorshkind K, McComas WA, Sarmiento UM, Rosen CA and Narayanan R, Antisense inhibition of the p65 subunit of NF-kappa B blocks tumorigenicity and causes tumor regression. Proc Natl Acad Sci U S A 90(21): 9901–5, 1993.PubMedCrossRefGoogle Scholar
  145. 145.
    Kopp E and Ghosh S, Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 265(5174): 956–9, 1994.PubMedCrossRefGoogle Scholar
  146. 146.
    Surabhi RM and Gaynor RB, RNA interference directed against viral and cellular targets inhibits human immunodeficiency Virus Type 1 replication. J Virol 76(24): 12963–73, 2002.CrossRefPubMedGoogle Scholar
  147. 147.
    Takaesu G, Surabhi RM, Park KJ, Ninomiya-Tsuji J, Matsumoto K and Gaynor RB, TAK1 is critical for IkappaB kinase-mediated activation of the NF-kappaB pathway. J Mol Biol 326(1): 105–15, 2003.CrossRefPubMedGoogle Scholar
  148. 148.
    Liu J and Seller DI, Distinct pathways for NF-kappa B regulation are associated with aberrant macrophage IL-12 production in lupus-and diabetes-prone mouse strains. J Immunol 170(9): 4489–96, 2003.PubMedGoogle Scholar
  149. 149.
    Pieper GM and Riaz ul H, Activation of nuclear factor-kappaB in cultured endothelial cells by increased glucose concentration: prevention by calphostin C. J Cardiovasc Pharmacol 30(4): 528–32, 1997.CrossRefPubMedGoogle Scholar
  150. 150.
    Cunningham MD, Cleaveland J and Nadler SG, An intracellular targeted NLS peptide inhibitor of karyopherin alpha:NF-kappa B interactions. Biochem Biophys Res Commun 300(2): 403–7, 2003.CrossRefPubMedGoogle Scholar
  151. 151.
    May MJ, D’Acquisto F, Madge LA, Glockner J, Pober JS and Ghosh S, Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex. Science 289(5484): 1550–4, 2000.CrossRefPubMedGoogle Scholar
  152. 152.
    Kwak HB, Lee SW, Lee DG, Hahm KS, Kim KK, Kim HH and Lee ZH, A hybrid peptide derived from cecropin-A and magainin-2 inhibits osteoclast differentiation. Life Sci 73(8): 993–1005, 2003.CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Shishir Shishodia
    • 1
  • Bharat B. Aggarwal
    • 1
  1. 1.Department of BioimmunotherapyThe University of Texas M. D. Anderson Cancer CenterHouston

Personalised recommendations