Advertisement

Cyclooxygenase-2 (COX-2) and the Inflammogenesis of Cancer

  • Randall E. Harris
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 42)

Cohesive scientific evidence from molecular, animal, and human investigations supports the hypothesis that aberrant induction of COX-2 and up-regulation of the prostaglandin cascade play a significant role in carcinogenesis, and reciprocally, blockade of the process has strong potential for cancer prevention and therapy. Supporting evidence includes the following: [1] expression of constitutive COX-2-catalyzed prostaglandin biosynthesis is induced by most cancer-causing agents including tobacco smoke and its components (polycylic aromatic amines, heterocyclic amines, nitrosamines), essential polyunsaturated fatty acids (unconjugated linoleic acid), mitogens, growth factors, proinflammatory cytokines, microbial agents, tumor promoters, and other epigenetic factors, [2] COX-2 expression is a characteristic feature of all premalignant neoplasms, [3] COX-2 expression is a characteristic feature of all malignant neoplasms, and expression intensifies with stage at detection and cancer progression and metastasis, [4] all essential features of carcinogenesis (mutagenesis, mitogenesis, angiogenesis, reduced apoptosis, metastasis, and immunosuppression) are linked to COX-2-driven prostaglandin (PGE-2) biosynthesis, [5] animal studies show that COX-2 up-regulation (in the absence of genetic mutations) is sufficient to stimulate the transformation of normal cells to invasive cancer and metastatic disease, [6] non-selective COX-2 inhibitors, such as aspirin and ibuprofen, reduce the risk of human cancer and precancerous lesions, and [7] selective COX-2 inhibitors, such as celecoxib, reduce the risk of human cancer and precancerous lesions at all anatomic sites thus far investigated. Results confirming that COX-2 blockade is effective for both cancer prevention and therapy have been tempered by observations that some COX-2 inhibitors pose a risk to the cardiovascular system, and more studies are needed in order to determine if certain of these drugs can be taken at dosages that prevent cancer without increasing cardiovascular risk. It is emphasized that the "inflammogenesis model of cancer" is not mutually exclusive and may in fact be synergistic with the accumulation of somatic mutations in tumor suppressor genes and oncogenes or epigenetic factors in the development of cancer

Keywords

Vascular Epidermal Growth Factor Epidermal Growth Factor Receptor Familial Adenomatous Polyposis Adenomatous Polyposis Coli Natl Cancer Inst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmedin J, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ. Cancer Statistics, 2006. CA Cancer J Clin 56: 106–130, 2006.Google Scholar
  2. 2.
    Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 61 (5): 759–767, 1990.PubMedCrossRefGoogle Scholar
  3. 3.
    Knudson AG. Two genetic hits (more or less) to cancer. Nat Rev Cancer 1 (2): 157–162, 2001.PubMedCrossRefGoogle Scholar
  4. 4.
    Soto AM, Sonnenschein C. The somatic mutation theory of cancer: growing problems with the paradigm? Biosessays 26 (10): 1097–1107, 2004.CrossRefGoogle Scholar
  5. Lijinsy W. A view of the relation between carcinogenesis and mutagenesis. Environ Mol Mutagen 14 (16): 78–84, 1989.CrossRefGoogle Scholar
  6. 6.
    Prehn RT. Cancers beget mutations versus mutations beget cancers. Cancer Research 54: 5296–5300,(1994).PubMedGoogle Scholar
  7. 7.
    Loeb LA, Loeb KR, Anderson JP. Multiple mutations and cancer. Proc Natl Acad Sci USA 100: 776–781, 2003.PubMedCrossRefGoogle Scholar
  8. 8.
    Verma M, Maruvada P, Srivastara S. Epigenetics and cancer. Crit Rev Clin Lab Sci 41: 5–6, 2004.Google Scholar
  9. 9.
    Momparler RL. Cancer epigenetics. Oncogene 22(42): 6479–6483, 2003.PubMedCrossRefGoogle Scholar
  10. 10.
    Virchow R. Reizung and Reizbarkeit. Arch Pathol Anat Klin Med 14: 1–63, 1858.CrossRefGoogle Scholar
  11. 11.
    Virchow R. Aetiologie der neoplastischen Geschwulst/Pathogenie der neoplastischen Geschwulste. In: Die Krankhaften Geschwulste. Berlin: Verlag von August Hirschwald, pp. 57–101, 1863.Google Scholar
  12. 12.
    Balkwill F, Mantovani A. Inflammationand cancer: back to Virchow? Lancet 357: 539–545, 2001.PubMedCrossRefGoogle Scholar
  13. 13.
    Schrieber H, Rowley DA. Inflammation and cancer. In: JI Gallin, R Snyderman, eds. Inflammation: Basic Principles and Clinical Correlates, third ed. Philadelphia: Lippincott Williams & Wilkins, pp. 1117–1129, 1999.Google Scholar
  14. 14.
    Coussens LM, Werb Z. Inflammation and cancer. Nature 420: 860–867, 2002.PubMedCrossRefGoogle Scholar
  15. 15.
    Philip M, Rowley DA, Schreiber H. Inflammation as a tumor promoter in cancer induction. Seminars in Cancer Biology 14: 433–439, 2004.PubMedCrossRefGoogle Scholar
  16. 16.
    Herschman HR. Historical Aspects of COX-2. In: RE Harris, ed. COX-2 Blockade in Cancer Prevention and Therapy. Human Press, Totowa, NJ, 2002.Google Scholar
  17. 17.
    Koki AT, Leahy KM, Harmon JM, Masferrer JL. Cyclooxygenase-2 and cancer. In: RE Harris, ed. COX-2 Blockade in Cancer Prevention and Therapy. Human Press, Totowa, NJ, 2002.Google Scholar
  18. 18.
    Harris RE. Cyclooxygenase-2 blockade in cancer prevention and therapy: widening the scope of impact. In: RE Harris, ed. COX-2 Blockade in Cancer Prevention and Therapy. Human Press, Totowa, NJ, 2002.Google Scholar
  19. 19.
    Robbins SL, Cotran RS. Pathologic Basis of Disease. 2nd edn, WB Saunders Company, Philadelphia, PA, 1979.Google Scholar
  20. 20.
    Kumar V, Fausto N, Abbas AK. Robbins and Cotran Pathologic Basis of Disease. 7th edn, WB Saunders Company, Philadelphia, PA, 2004.Google Scholar
  21. 21.
    Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN. Up-regulation of cyclooxygenase-2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 107: 1183–1188, 1994.PubMedGoogle Scholar
  22. 22.
    Sano H, Kawahito Y, Wilder RR, Hashiramoto A, Mukai S, Asai K, Kimura S, Kato H, Kondo M, Hla T. Expression of cyclooxygenase-1 and -2 in colorectal cancer. Cancer Res 55: 3785–3789, 1995.PubMedGoogle Scholar
  23. 23.
    Dubois RN, Smalley WE. Cyclooxygenase, NSAIDs, and colorectal cancer. J Gastroenterology 31: 898–906, 1996.CrossRefGoogle Scholar
  24. 24.
    Parrett ML, Harris RE, Joarder FS, Ross MS, Clausen KP, Robertson FM. Cyclooxygenase-2 gene expression in human breast cancer. International Journal of Oncology 10: 503–507, 1997.Google Scholar
  25. 25.
    Hwang D, Scollard D, Byrne J, Levine E. Expression of cyclooxygenase-1 and cyclooxygenase-2 in human breast cancer. J Natl Cancer Inst 90 (6): 455–460, 1998.PubMedCrossRefGoogle Scholar
  26. 26.
    Morris CD, Armstrong GR, Bigley G, Green H, Attwood SE. Cyclooxygenase-2 expression in the Barrett’s metaplasia-dysplasia-adnocarcinoma sequence. Am J Gastroenterol 96 (4): 991–996, 2001.Google Scholar
  27. 27.
    Lagorce C, Paraf F, Vidaud D, Couvelard A, Wendum D, Martin A, Flejou JF. Cyclooxygenase-2 is expressed frequently and early in Barrett’s eosophagus and associated adenocarcinoma. Histopathology 42 (5): 457–465, 2003.PubMedCrossRefGoogle Scholar
  28. 28.
    Buskens CJ, Van Rees BP, Sivula A, Reitsma JB, Haglund C, Bosma PJ, Offerhaus GJ, Van Lanschot JJ, Ristimaki A. Prognostic significance of elevated cyyclooxygenase-2 expression in patients with adenocarcinoma of the esophagus. Z Gastroenterol 41 (7): 678–681, 2003.Google Scholar
  29. 29.
    Shirahama T, Sakakura C. Overexpression of cyclooxygenase-2 in squamous cell carcinoma of the urinary bladder. Clin Cancer Res (3): 558–561, 2001.Google Scholar
  30. 30.
    Shirahama T. Cyclooxygenase-2 expression is up-regulated in transitional cell carcinoma and its preneoplastic lesions in the human urinary bladder. Clin Cancer Res 6 (6): 2424–2430, 2000.PubMedGoogle Scholar
  31. 31.
    Mohammed SI, Knapp DW, Bostwick DG, Foster RS, Khan KN, Masferrer JL, Woerner BM, Snyder PW, Koki AT. Expression of cyclooxygenase-2 (COX-2) in human invasive transitional cell carcinoma (TCC) of the urinary bladder. Cancer Res 59 (22): 5647–5650, 1999.PubMedGoogle Scholar
  32. 32.
    Oku S, Higashi M, Imazono Y, Sueyoshi K, Enokida H, Kubo H, Yonezawa S, Shirahama T. Overexpression of cyclooxygenase-2 in high-grade human transitional cell carcinoma of the upper urinary tract. BJU Int 91 (1): 109–114, 2003.PubMedCrossRefGoogle Scholar
  33. 33.
    Barnes N, Haywood P, Flint P, Knox WF, Bundred NJ. Survivin expression in in situ and invasive breast cancer relates to COX-2 expression and DCIS recurrence. Br J Cancer 94 (2): 253–258, 2006.PubMedCrossRefGoogle Scholar
  34. 34.
    Perrone G, Santini D, Vincenzi B, Zagami M, La Cesa A, Bianchi A, Altomare V, Primavera A, Battista ZC, Vetrani A, Tonini G, Rabitti C. Cox-2 expression in DCIS: correlation with VEGF, HER-2/neu, prognostic molecular markers and clinico-pathological features. Histopathology 46 (5): 561–568, 2005.PubMedCrossRefGoogle Scholar
  35. 35.
    Boland GP, Butt IS, Prasad R, Knox WF, Bundred NJ. COX-2 expression is associated with an aggressive phenotype in ductal carcinoma in situ. Br J Cancer 90 (2): 423–429, 2004.PubMedCrossRefGoogle Scholar
  36. 36.
    Nakopoulou L, Mylona E, Papadaki I, Kapranou A, Giannopoulou I, Markaki S, Keramopoulous A. Overexpression of cyclooxygenase-2 is associated with a favorable prognostic phenotype in breast carcinoma. Pathobiology 72 (5): 241–249, 2005.PubMedCrossRefGoogle Scholar
  37. 37.
    Mehrotra S, Morimiya A, Agarwal B, Konger R, Badve S. Microsomal prostaglandin E2 synthase-1 in breast cancer: a potential target for therapy. J Pathol 208 (3): 356–363, 2006.PubMedCrossRefGoogle Scholar
  38. 38.
    Hartmann LC, Lingle W, Frost MH, Shaun D, Maloney RA, Vierkant V, Pankratz S, Tisty T, Degnim AC, Visscher DW. COX-2 expression in atypia: correlation with breast cancer risk. Abstract No. 2353, American Association for Cancer Research, 97th Annual Meeting, 2006.Google Scholar
  39. 39.
    Kim JY, Lim SJ, Park K, Lee CM, Kim J. Cyclooxygenase-2 and c-erbB-2 expression in uterine cervical neoplasm assessed using tissue microarrays. Gynecol Oncol 97 (2): 337–341, 2005.PubMedCrossRefGoogle Scholar
  40. 40.
    Farley J, Uyehara C, Hashiro G, Belnap C, Birrer M, Salminen E. Cyclooxygenase-2 expression predicts recurrence of cervical dysplasia following loop electrosurgical excision procedure. Gynecol Oncol 92 (2): 596–602, 2004.PubMedCrossRefGoogle Scholar
  41. 41.
    Sales KJ, Katz AA, Davis M, Hinz S, Soeters RP, Hofmeyr MD, Millar RP, Jabbour HN. Cyclooxygenase-2 expression and prostaglandin E(2) synthesis are up-regulated in carcinomas of the cervix. J Clin Endocrinol Metab 86 (5): 2243–2249, 2001.PubMedCrossRefGoogle Scholar
  42. 42.
    Lee JS, Choi YD, Lee JH, Nam JH, Choi C, Lee MC, Parck CS, Juhng SW, Kim HS, Min KW. Expression of cyclooxygenase-2 in adenocarcinomas of the uterine cervix and its relation to angiogenesis and tumor growth. Gynecol Oncol 95 (3): 523–529, 2004.PubMedCrossRefGoogle Scholar
  43. 43.
    Chen HH, Su WC, Chou CY, Gui HR, Ho SY, Que J, Lee WY. Increased expression of nitric oxide synthase and cylooxygenase-2 is associated with poor survival in cervical cancer treated with radiotherapy. Int J Radiat Oncol Biol Phys 63 (4): 1093–1100, 2005.PubMedCrossRefGoogle Scholar
  44. 44.
    Manchana T, Triratanachat S, Sirisabya N, Vasuratna A, Termrungruanglert W, Tresukosol D. Prevalence and prognostic significance of COX-2 expression in stage IB cervical cancer. Gynecol Oncol 100 (3): 556–560, 2006.PubMedCrossRefGoogle Scholar
  45. 45.
    Kulkarni S, Rader JS, Zhang F, Liapis H, Koki AT, Masferrer JL, Subbaramaiah K, Dannenberg AJ. Cyclooxygenase-2 is overexpressed in human cervical cancer. Clin Cancer Res 7 (2): 429–434, 2001.PubMedGoogle Scholar
  46. 46.
    Soslow RA, Dannenberg AJ, Rush D, Woerner BM, Khan KN, Masferrer JL, Koki AT. COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 89 (12): 2637–2645, 2000.PubMedCrossRefGoogle Scholar
  47. 47.
    Khan KN, Masferrer JL, Woerner BM, Soslow R, Koki AT. Enhanced cyclooxygenase-2 expression in sporadic and familial adenomatous polyposis of the human colon. Scand J Gastroenterol 36 (8): 865–869, 2001.PubMedCrossRefGoogle Scholar
  48. 48.
    Nasir A, Kaiser HE, Boulware D, Hakam A, Zhao H, Yeatman T, Barthel J, Coppola D. Cyclooxygenase-2 expression in right and left-sided colon cancer. Clin Colorectal Cancer 3 (4): 243–247, 2004.PubMedGoogle Scholar
  49. 49.
    Soumaoro LT, Uetake H, Takagi Y, Iida S, Higuchi T, Yasuno M, Enomoto M, Sugihara K. Co-expression of VEGF-C and COX-2 in human colorectal cancer and its association with lymph node metastasis. Dis Colon Rectum 49 (3): 393–398, 2006.CrossRefGoogle Scholar
  50. 50.
    Hida T, Yatabe Y, Achiwa H, Muramatsu H, Kozaki K, Nakamura S, Ogawa M, Mitsudomi T, Sugiura T, Takahashi T. Increased expression of cyclooxygenase-2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res 58 (17): 3761–3764, 1998.PubMedGoogle Scholar
  51. 51.
    Wolff H, Saukkonen K, Anttila S, Karjalainen A, Vainio H, Ristimaki A. Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Res 58 (22): 4997–5001, 1998.PubMedGoogle Scholar
  52. 52.
    Khuri FR, Wu H, Lee JJ, Kemp BL, Lotan R, Lippman SM, Feng L, Hong WK, Xu XC. Cyclooxygenase-2 overexpression is a marker of poor prognosis in stage I non-small cell lung cancer. Clin Cancer Res 7 (4): 861–867, 2001.PubMedGoogle Scholar
  53. 53.
    Achiwa H, Yatabe Y, Hida T, Kuroishi T, Kozaki K, Nakamura S, Ogawa M, Sugiura T, Mitsudomi T, Takahasi T. Prognostic significance of elevated cyclooxygenase-2 expression in primary, resected lung adenocarcinomas. Clin Cancer Res 5 (5): 1001–1005, 1999.PubMedGoogle Scholar
  54. 54.
    Marrogi AJ, Travis WD, Welsh JA, Khan MA, Rahim H, Tazelaar H, Pairolero P, Trastek V, Jett J, Caporaso NE, Liotta LA, Harris CC. Nitric oxide synthase, cyclooxygenase-2, and vascular endothelial growth factor in the angiogenesis of non-small cell lung carcinoma. Clin Cancer Res 6 (12): 4739–4744, 2000.PubMedGoogle Scholar
  55. 55.
    Marrogi A, Pass HI, Khan M, Metheny-Barlow LJ, Harris CC, Gerwin BI. Human mesothelioma samples overexpress both cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (NOS2): in vitro antiproliferative effects of a COX-2 inhibitor. Cancer Res 60 (14): 3696–3700, 2000.PubMedGoogle Scholar
  56. 56.
    Sudbo J, Ristimaki A, Sondresen JE, Kildal W, Goysen M, Koppang HS, Reith A, Risberg B, Nesland JM, Bryne M. Cyclooxygenease-2 (COX-2) expression in high-risk premalignant oral lesions. Oral Oncol 39 (5): 497–505, 2003.PubMedCrossRefGoogle Scholar
  57. 57.
    Pannone G, Bufo P, Caiaffa MF, Serpco R, Lanza A, Lo Muzio L, Rubini C, Staibano S, Petruzzi M, De Benedictis M, Tursi A, De Rosa G, Macchia L. Cyclooxygenase-2 expression in oral squamous cell carcinoma. Int J Immunopathol Pharmacol 17 (3): 273–282, 2004.PubMedGoogle Scholar
  58. 58.
    Tang DW, Lin SC, Chang KW, Chi CW, Chang CS, Liu TY. Elevated expression of COX-2 in oral squamous cell carcinoma. J Oral Pathol Med 32 (9): 522–529, 2003.PubMedCrossRefGoogle Scholar
  59. 59.
    Chang BW, Kim DH, Kowalski DP, Burleson JA, Son YH, Wilson LD, Haffty BG. Prognostic significance of cyclooxygenase-2 in oropharyngeal squamous cell carcinoma. Clin Cancer Res 10 (5): 1678–1684, 2004.PubMedCrossRefGoogle Scholar
  60. 60.
    Gupta S. Srivastava M, Ahmad N, Bostwick DG, Mukhtar H. Overexpression of cyclooxygenase-2 in human prostate adenocarcinoma. Prostate 42: 73–78, 2000.PubMedCrossRefGoogle Scholar
  61. 61.
    Yoshimura R, Sano H, Masuda C, Kawamura M, Tsubouchi Y, Charui J. Expression of cyclooxygenease-2 in prostate carcinoma. Cancer 89: 589–596, 2000.PubMedCrossRefGoogle Scholar
  62. 62.
    Wang W, Bergh A, Damber JE. Cyclooxygenase-2 expression correlates with local chronic inflammation and tumor neovascularization in human prostate cancer. Clin Cancer Res 11 (9): 3250–3256, 2005.PubMedCrossRefGoogle Scholar
  63. 63.
    Edwards J, Mukherjee R, Munro AF, Wells AC, Almushatat A, Bartlett JM. HER2 and COX2 expression in human prostate cancer. Eur J Cancer 40 (1): 50–55, 2004.PubMedCrossRefGoogle Scholar
  64. 64.
    Kirschenbaum A, Liu X, Yao S, Levine AC. The role of cyclooxygenase-2 in prostate cancer. Urology 58 (2 Suppl 1): 127–131, 2001.PubMedCrossRefGoogle Scholar
  65. 65.
    Masferrer JL, Leahy KM, Koki AT, Aweifel BS, Settle SL, Woerner BM, Edwards DA, Flickinger AG, Moore RJ, Seibert K. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res 60 (5): 1306–1311, 2000.PubMedGoogle Scholar
  66. 66.
    Peng JP, Chang HC, Hwang CF, Hung WC. Overexpression of cyclooxygenase-2 in nasopharyngeal carcinoma and association with lymph node metastasis. Oral Oncol 41 (9): 903–908, 2005.PubMedCrossRefGoogle Scholar
  67. 67.
    Lu H, Gong S. Expression of cyclooxygenase-2 and p53 and their correlation in carcinoma of larynx. Lin Chuang Er Bi Yan Hou Ke Za Zhi 18 (7): 421–423, 2004.PubMedGoogle Scholar
  68. 68.
    Sakamoto T, Kondo K, Yamasoba T, Sugasawa M, Kaga K. Elevated expression of cyclooxygenase-2 in adenocarcinomas of the parotid gland: insights into malignant transformation of pleomorphic adenoma. Ann Otol Rhinol Laryngol 113 (11): 930–935, 2004.PubMedGoogle Scholar
  69. 69.
    Liu J, Yu HG, Yu JP, Wang XL, Zhou XD, Luo HS. Overexpression of cylooxygenase-2 in gastric cancer correlated with the high abundance of vascular endothelial growth factor-C and lymphatic metastasis. Med Oncol 22 (4): 389–397, 2005.PubMedCrossRefGoogle Scholar
  70. 70.
    Mrena J, Wiksten JP, Thiel A, Kokkola A, Pohjola L, Lundin J, Nordling S, Ristimaki A, Haglund C. Cyclooxygenase-2 is an independent prognostic factor in gastric cancer and its expression is regulated by the messenger RNA stability factor HuR. Clin Cancer Res 11 (20): 7362–7368, 2005.PubMedCrossRefGoogle Scholar
  71. 71.
    Tucker ON, Dannenberg AJ, Yang EK, Zhang F, Teng L, Daly JM, Soslow RA, Masferrer JL, Woerner BM, Koki AT, Fahey TJ. 3rd. Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Res 59 (5): 987–990, 1999.PubMedGoogle Scholar
  72. 72.
    Shiota G, Ikubo M, Noumi T, Goguchi N, Oyama K, Takano Y. Cyclooxygenase-2 expression in hepatocellular carcinoma. Hepatogastroenterology 46 (25): 407–412, 1999.PubMedGoogle Scholar
  73. 73.
    Ferrandina G, Zannoni GF, Ranelletti FO, Legge F, Gessi M, Salutari V, Gallotta V, Lauriola L, Scambia G. Cyclooxygenase-2 expression in borderline ovarian tumors. Gynecol Oncol 95 (1): 46–51, 2004.PubMedCrossRefGoogle Scholar
  74. 74.
    Ferrandina G, Legge F, Ranelletti FO, Zannoni GF, Maggiano N, Evangelisti A, Mancuso S, Scambia G, Lauriola L. Cyclooxygenase-2 expression in endometrial carcinoma: correlation with clinicopathologic parameters and clinical outcome. Cancer 95 (4): 801–807, 2002.PubMedCrossRefGoogle Scholar
  75. 75.
    Ristimaki A, Nieminen O, Saukkonen K, Hotakainen K, Nordling S, Haglund C. Expression of cyclooxygenase-2 in human transitional cell carcinoma of the urinary bladder. Am J Pathol 158 (3): 849–853, 2001.PubMedGoogle Scholar
  76. 76.
    Buckman SY, Gresham A, Hale P, Hruza G, Anast J, Masferrer J. COX-2 expression is induced by UVB exposure in human skin: implications for the development of skin cancer. Carcinogenesis 19 (5): 723–729, 1998.PubMedCrossRefGoogle Scholar
  77. 77.
    Muller-Decker K. Cyclooxygenases in the skin. J Dtsch Dermatol Ges 2 (8): 668–675, 2004.PubMedCrossRefGoogle Scholar
  78. 78.
    Kuzbicki L, Sarneck A, Chwirot BS. Expression of cyclooxygenase-2 in benign nevi and during human cutaneous melanoma progression. Melanoma Res 16 (1): 29–36, 2006.PubMedCrossRefGoogle Scholar
  79. 79.
    Ladetto M, Vallet S, Trojan A, Dell’ Aquila M, Monitillo L, Rosato R, Santo L, Drandi D, Bertola A, Falco P, Cavallo F, Ricca I, De Marco F, et al. Cyclooxygenase-2 (COX-2) is frequently expressed in multiple myeloma and is an independent predictor of poor outcome. Blood 105 (12): 4784–4791, 2005.PubMedCrossRefGoogle Scholar
  80. 80.
    Sminia P, Stoter TR, van der Valk P, Elkhuizen PH, Tadema TM, Kuipers GK, Vandertop WP, Lafleur MV, Slotman BJ. Expression of cyclooxygenase-2 and epidermal growth factor receptor in primary and recurrent gliobastoma multiforme. J Cancer Res Clinc Oncol 131 (10): 653–661, 2005.CrossRefGoogle Scholar
  81. 81.
    Buccoliero AM, Caldarella A, Arganini L, Mennonna P, Gallina P, Taddei A, Taddei GL. Cyclooxygenase-2 in oligodendroglioma: possible prognostic significance. Neuropathology 24 (3): 201–207, 2004.PubMedCrossRefGoogle Scholar
  82. 82.
    Karin MM, Hayashi Y, Inoie M, Imai Y, Ito H, Yamamoto M. COX-2 expression in retinoblastoma. Am J Opthamol 129 (3): 398–401, 2000.CrossRefGoogle Scholar
  83. 83.
    Dickens DS, Kozielski R, Khan J, Forus A, Cripe TP. Cyclooxygenase-2 expression in pediatric sarcoma. Pediatr Dev Pathol 5 (4): 356–364, 2002.PubMedCrossRefGoogle Scholar
  84. 84.
    Lassus P, Ristimaki A, Huuhtanen R, Tukiainen E, Asko-Seljavaara S, Andersson LC, Miettinen M, Blomqvist C, Haglund C, Bohling T. Cyclooxygenase-2 expression in human soft-tissue sarcomas is related to epithelial differentiation. Anticancer Res 25 (4): 2669–2674, 2005.PubMedGoogle Scholar
  85. 85.
    Secchiro P, Barbarotto E, Gonelli A, Tiribelli M, Zerbinati C, Celeghini C, Agostinelli C, Pileri SA, Zauli G. Potential pathogenetic implication of cylcooxygenase-2 overexpression in B chronic lymphoid leukemia cells. Am J Pathol 167 (6): 1599–1607, 2005.Google Scholar
  86. 86.
    Hazar B, Ergin M, Sevrek E, Erdogan S, Tuncer I, Hakverdi S. Cyclooxygenase-2 (COX-2) expression in lymphoma. Leuk Lymphoma 45 (7): 1395–1399, 2004.PubMedCrossRefGoogle Scholar
  87. 87.
    Li HL, Sun BZ, Ma FC. Expression of COX-2, iNOS, p. 53, and Ki-67 in gastric mucosa-associated lymphoid tissue lymphoma. World J Gastroenterol 10 (13): 1862–1866, 2004.PubMedGoogle Scholar
  88. 88.
    Liu CH, Chang SH, Narko K, Trifan OC, Wu MT, Smith E, Haudenschild C, Lane TF, Hla T. Overexpression of cyclooxygnease-2 is sufficient to induce tumorigenesis in transgenic mice. J Biol Chem 276 (21): 18563–18569, 2001.PubMedCrossRefGoogle Scholar
  89. 89.
    Reddy BS, Rao CV. Role of synthetic and naturally occurring cyclooxygenase inhibitors in colon cancer prvention. In: RE Harris, ed. COX-2 Blockade in Cancer Prevention and Therapy. Human Press, Totowa, NJ, pp. 71–83, 2002.CrossRefGoogle Scholar
  90. 90.
    Abou-Issa HM, Alshafie GA, Harris RE. Chemoprevention of breast cancer by nonsteroidal anti-inflammatory drugs and selective COX-2 blockade in animals. In: RE Harris, ed. COX-2 Blockade in Cancer Prevention and Therapy. Human Press, Totowa, NJ, pp. 85–98, 2002.CrossRefGoogle Scholar
  91. 91.
    Schuller HM. The role of cyclooxygenase-2 in the prevention and therapy of lung cancer. In: RE Harris, ed. COX-2 Blockade in Cancer Prevention and Therapy. Human Press, Totowa, NJ, pp. 99–116, 2002.CrossRefGoogle Scholar
  92. 92.
    Whelan J, McEntee MF. Nonsteroidal anti-inflammatory drugs, prostaglandins, and Apc-driven intestinal tumorigenesis. In: RE Harris, ed. COX-2 Blockade in Cancer Prevention and Therapy. Human Press, Totowa, NJ, pp. 117–145,2002.CrossRefGoogle Scholar
  93. 93.
    DuBois RN, Abramson SB, Rofford L, Gupta RA, Simon LS, Van De Putte LB, Lypsky PE. Cyclooxygenase in biology and disease. FASEB J 12: 1063–1073, 1998.PubMedGoogle Scholar
  94. 94.
    Wu KK. Cyclooxygenase-2 induction: molecular mechanisms and pathophysiologic roles. J Lab Clin Med 128: 242–245, 1996.PubMedCrossRefGoogle Scholar
  95. 95.
    Shiff SJ, Rigas B. The role of cyclooxygenase inhibition in the antineoplastic effects of nonsteroidal anti-inflammatory drugs (NSAIDs). J Exp Med 190: 445–450, 1999.PubMedCrossRefGoogle Scholar
  96. 96.
    Howe LR, Subbaramaiah K, Brown AMC, Dannenberg AJ. Cyclooxygenase-2: a target for the prevention and treatment of breast cancer. Endocrine-Related Cancer 8: 97–114, 2001.PubMedCrossRefGoogle Scholar
  97. 97.
    Kelley DJ, Mestre JR, Subbaramaiah K, Sacks PG, Schantz SP, Tanabe T, Inoue H, Ramonetti JT, Dannenberg AJ. Benzo[a]pyrene up-regulates cyclooxygenase-2 gene expression in oral epithelial cells. Carcinogenesis 18 (4): 795–799, 1997.PubMedCrossRefGoogle Scholar
  98. 98.
    Song S, Lippman SM, Zouj Y, Ye X, Ajani JA, Xu XC. Induction of cyclooxygenase-2 by benzo[a]pyrene diol epoxide through inhibiton of retinoic acid receptor-beta 2 expression. Oncogene 24 (56): 8268–8276, 2005.PubMedCrossRefGoogle Scholar
  99. 99.
    Karmali RA. Dietary fatty acids, COX-2 blockade, and carcinogenesis. In: RE Harris, ed. COX-2 Blockade in Cancer Prevention and Therapy. Human Press, Totowa, NJ, pp. 3–12, 2002.CrossRefGoogle Scholar
  100. 100.
    Burd R, Choy H, Dicker A. Potential for inhibitors of cyclooxygenase-2 to enhance tumor radioresponse. In: RE Harris, ed. COX-2 Blockade in Cancer Prevention and Therapy. Human Press, Totowa, NJ, pp. 301–311, 2002.CrossRefGoogle Scholar
  101. 101.
    Jaimes EA, Tian RX, Pearse D, Raij L. Up-regulation of glomerular COX-2 by angiotensin II: role of reactive oxygen species. Kidney Int (5): 2143–2153, 2005.Google Scholar
  102. 102.
    Chang YW, Putzer K, Ren L, Kaboord B, Chance TW, Qoronfleh MW, Jakobi R. Differential regulation of cyclooxygenase 2 expression by small GTPases Ras, Rac1, and RhoA. J Cell Biochem 96(2): 314–329, 2005.PubMedCrossRefGoogle Scholar
  103. 103.
    Coffey RJ, Hawkey CJ, Damstrup L, Graves-Deal R, Daniel VC, Dempsey PJ, Chinery R, Kirkland SC, DuBois RN, Jetton TL, Morrow JD. Epidermal growth factor receptor activation induces nuclear targeting of cylooxygenase-2, basolateral realease of prostaglandins, and mitogenesis in polarizing colon cancer cells. Proc Natl Acad Sci USA 94 (2): 657–662, 1997.PubMedCrossRefGoogle Scholar
  104. 104.
    Moraitis D, Du B, De Lorenzo MS, Boyle JO, Weksler BB, Cohen EG, Carew JF, Altorki NK, Kopelovich L, Subbaramaiah K, Dannenberg AJ. Levels of cyclooxygenase-2 are increased in the oral mucosa of smokers: evidence for the role of epidermal growth factor receptor and its ligands. Cancer Res 65 (2): 664–670, 2005.PubMedGoogle Scholar
  105. 105.
    Chang YJ, Wu MS, Lin JT, Chen CC. Helicobacter pylori-induced invasion and angiogenesis of gastric cells is mediated by cyclooxygenase-2 induction through TLR2/TLR9 and promoter regulation. J Immunol 175 (12): 8242–8252, 2005.PubMedGoogle Scholar
  106. 106.
    Konturek PC, Hartwich A, Zuchowicz M, Labza H, Pierzchalski P. Helicobacter pylori, gastrin and cyclooxygenase in gastric cancer. J Physiol Pharmacol 51 (4, Pt 1): 737–749, 2000.PubMedGoogle Scholar
  107. 107.
    Singh A, Sharma H, Salhan S, Gupta SD, Bhatla N, Jain SK, Singh N. Evaluation of expression of apoptosis-related proteins and their correlation with HPV, telomerase activity, and apoptotic index in cervical cancer. Pathobiology 71 (6): 314–322, 2004.PubMedCrossRefGoogle Scholar
  108. 108.
    Cheng AS, Chan HL, Leung WK, To KF, Go MY, Chan JY, Liew CT, Sung JJ. Expression of HBx and COX-2 in chronic hepatitis B, cirrhosis and hepatocellular carcinoma: implication of HBx in upregulation of COX-2. Mod Pathol 17 (10): 1169–1179, 2004.PubMedCrossRefGoogle Scholar
  109. 109.
    Kaul R, Verma SC, Murakami M, Lan K, Choudhuri T, Robertson ES. Epstein-Barr virus protein can upregulate cyclo-oxygenase-2 expression through association with the suppressor of metastasis Nm23-H1. J Virol 80 (3): 1321–1331, 2006.PubMedCrossRefGoogle Scholar
  110. 110.
    Ji YS, XI Q, Schmedtje JF Jr. Hypoxia induced high-mobility group protein I(Y) and transcription of the cyclooxygenase-2 gene in human vascular endothelium. Circ Res 83 (3): 295–304, 1998.PubMedGoogle Scholar
  111. 111.
    Diaz-Cruz ES, Brueggemeier RW. Interrelationships between cyclooxygenases and aromatase: unraveling the relevance of cyclooxygenase inhibitors in breast cancer. Anticancer Agents Med Chem 6(3): 221–232, 2006.PubMedGoogle Scholar
  112. 112.
    Muller N, Riedel M, Schwarz MJ. Psychotropic effects of COX-2 inhibitors–a possible new approach for the treatment of psychiatric disorders. Pharmacopsychiatry 37(6): 266–269, 2004.PubMedCrossRefGoogle Scholar
  113. 113.
    Inoue H, Taba Y, Miwa Y, Yokota C, Miyagi M, Sasaguri T. Transcriptional and posttranscriptional regulation of cyclooxygenase-2 expression by fluid shear stress in vascular endothelial cells. Arterioscler Thromb Vasc Biol 22(9): 1415–1420, 2002.PubMedCrossRefGoogle Scholar
  114. 114.
    Bezugla Y, Kolada A, Kamionka S, Bernard B, Scheibe R, Dieter P. COX-1 and COX-2 contribute differentially to the LPS-induced release of PGE2 and TxA2 in liver macrophages. Prostaglandins Other Lipid Mediat 79 (1–2): 93–100, 2006.PubMedCrossRefGoogle Scholar
  115. 115.
    Karmali RA, Marsh J. Antitumor activity in rat mammary adenocarcinoma: effects of cyclooxygenase inhibitors and immunization against prostaglandin E2. Prostaglandins Leukotrienes and Medicine 23: 11–14, 1986.CrossRefGoogle Scholar
  116. 116.
    Rose DP, Connolly JM. Omega-3 fatty acids as cancer chemopreventive agents. Pharmacology and Therapeutics 83: 217–244, 1999.PubMedCrossRefGoogle Scholar
  117. 117.
    Harris RE, Robertson FM, Farrar WB, Brueggemeier RW. Genetic induction and upregulation of cyclooxygenase (COX) and aromatase (CYP-19): an extension of the dietary fat hypothesis of breast cancer. Medical Hypotheses 52 (4): 292–293, 1999.CrossRefGoogle Scholar
  118. 118.
    Martey CA, Baglole CJ, Gasiewicz TA, Sime PJ, Phipps RP. The aryl hydrocarbon receptor is a regulator of cigarette smoke induction of the cyclooxygenase and prostaglandin pathways in human lung fibrobasts. Am J Physiol Lung Cell Mol Physiol 289 (3): 391–399, 2005.CrossRefGoogle Scholar
  119. 119.
    Shin VY, Liu ES, Ye YN, Koo MW, Chu KM, Cho CH. A mechanistic study of cigarette smoke and cyclooxygenase-2 on proliferation of gastric cancer cells. Toxicol Appl Pharmacol 195(1): 103–112, 2004.PubMedCrossRefGoogle Scholar
  120. 120.
    Liu ES, Shin VY, Ye YN, Luo JC, Wu WK, Cho CH. Cyclooxygenase-2 in cancer cells and macrophages induces colon cancer cell growth by cigarette smoke extract. Eur J Pharmacol 518(1): 47–55, 2005.PubMedCrossRefGoogle Scholar
  121. 121.
    Cakir Y, Plummer HK 3rd, Tithof PK, Schuller HM. Beta-adrenergic and arachidonic acid-mediated growth regulation of human breast cancer cell lines. Int J Oncol J 1: 153–157, 2002.Google Scholar
  122. 122.
    Badawi AF, Habib SL, Mohammed MA, Abadi AA, Michael MS. Influence of cigarette smoking on prostaglandin synthesis and cyclooxygenase-2 gene expression in human urinary bladder cancer. Cancer Invest 20 (5–6): 651–656, 2002.PubMedCrossRefGoogle Scholar
  123. 123.
    Izzotti A, Cartiglia C, Longobardi M, Balansky RM, D’Agostini F, Lubet RA, De Flora S. Alterations of gene expression in skin and lung of mice exposed to light and cigarette smoke. FASEB J 18 (13):1559–1561, 2004.PubMedGoogle Scholar
  124. 124.
    Rioux N, Castonaguay A. Prevention of NNK-induced lung tumorigenesis in A? J mice by acetylsalicylic acid and NS-398. Cancer Res 58: 5354–5360, 1998.PubMedGoogle Scholar
  125. 125.
    Castonguay A, Rioux N, Duperron C, Jalbert G. Inhibition of lung tumorigenesis by NSAIDs: a working hypothesis. Exp Lung Res 24: 605–615, 1998.PubMedCrossRefGoogle Scholar
  126. 126.
    Tsai KS, Yang RS, Liu SH. Benzo[a]pyrene regulates osteoblast proliferation through an estrogen receptor-related cyclooxygenase-2 pathway. Chem Res Toxicol (5): 679–684, 2004.Google Scholar
  127. 127.
    Schuller HM, Plummer HK III, Bochsler PN, Dudrick P, Bell JL, Harris RE. Co-expression of beta-adrenergic receptors and cyclooxygenase-2 in pulmonary adenocarcinomas. Int J Oncol 19: 445–449, 2001.PubMedGoogle Scholar
  128. 128.
    Jang B-C, Hla T. Regulation of expression and potential carcinogenic role of cylcooxygenase-2. In: RE Harris, ed. COX-2 Blockade in Cancer Prevention and Therapy. Human Press, Totowa, NJ, pp. 3–12, 2002.Google Scholar
  129. 129.
    Ogino S, Brahmandam M, Kawasaki T, Kirkner GJ, Loda M, Fuchs CS. Combined Analysis of COX-2 and p53 Expressions Reveals Synergistic Inverse Correlations with Microsatellite Instability and CpG Island Methylator Phenotype in Colorectal Cancer. Neoplasia 8 (6): 458–464, 2006.PubMedCrossRefGoogle Scholar
  130. 130.
    Chow LW, Zhu L, Loo WT, Lui EL. Aberrant methylation of cyclooxygenase-2 in breast cancer patients. Biomed Pharmacother 59 (2): S264–267, 2005.PubMedCrossRefGoogle Scholar
  131. 131.
    Marnett LJ. Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res 424: 83–95, 1999.PubMedGoogle Scholar
  132. 132.
    Hendrickse CW, Kelly RW, Radley S, Donovan IA, Beighley MRB, Neoptolemos JP. Lipid peroxidation and prostaglandins in colorectal cancer. Br J Surg 81: 1219–1223, 1994.PubMedCrossRefGoogle Scholar
  133. 133.
    Plastara JP, Guengerich FP, Nebert DW, Marnett LJ. Xenobiotic-metabolizing cytochromes P450 convert prostaglandin endoperoxide to hydroxyheptadecatienoic acid and the mutagen, malondialdehyde. J Biol Chem 275: 11784–11790, 2000.CrossRefGoogle Scholar
  134. 134.
    Marnett LJ, Basu AK, O’hara SM, Weller PE, Rahman AFMM, Oliver JP. Reaction of malondialdehyde with guanine nucleosides: formation of adducts containing oxadraza-bicyclononene residues in the base-pairing region. J Am Chem Soc 108: 1348–1350, 1986.CrossRefGoogle Scholar
  135. 135.
    Sharma RA, Gescher A, Plastaras JP, Ceuratti C, Singh R, Gallacher-Horley B, Offord E, Marnett LJ, Steward WP, Plummer SM. Cycloxygenase-2, malondialdehyde and pyrimidopurinone adducts of deoxyguanosine in human colon cells. Carcinogensis 22 (9): 1557–1560, 2001.CrossRefGoogle Scholar
  136. 136.
    Pai R, Soreghan B, Szabo IL, Pavelka M, Baatar D, Tarnawski AS. Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat Med 8 (3): 289–293, 2002.PubMedCrossRefGoogle Scholar
  137. 137.
    Mestre JR, Subbaramaiah K, Sacks PG, Schantz SP, Tanabe T, Inoue H, Dannenberg AJ. Retinoids suppress epidermal growth factor-induced transcription of cyclooxygenase-2 in human oral squamous carcinoma cells. Cancer Res 57 (14): 2890–2895, 1997.PubMedGoogle Scholar
  138. 138.
    Kinoshita T, Takahashi Y, Sakashita T, Inoue H, Tanabe T, Yoshimoto T. Growth stimulation and induction of epidermal growth factor receptor by overexpression of cyclooxygenases 1 and 2 in human colon carcinoma cells. Biochim Biophys Acta 1438 (1): 120–130, 1999.PubMedGoogle Scholar
  139. 139.
    Zhao Y, Agarwal VR, Mendelson CR, Simpson ER. Estrogen biosynthesis proximal to a breast tumor is stimulated by PGE2 via cyclic AMP, leading to activation of promoter II of the CYP19 (aromatase) gene. Endocrinology 137 (12): 5739–5742, 1996.PubMedCrossRefGoogle Scholar
  140. 140.
    Brueggemeier RW, Quinn AL, Parrett ML, Joarder FS, Harris RE, Robertson FM. Correlation of aromatase and cyclooxygenase gene expression in human breast cancer specimens. Cancer Lett 140 (1–2): 27–35, 1999.PubMedCrossRefGoogle Scholar
  141. 141.
    Richards JA, Brueggemeier. Interactions of cyclooxygenase and aromatase pathways in normal and malignant breast cells. In: RE Harris, ed. COX-2 Blockade in Cancer Prevention and Therapy. Human Press, Totowa, NJ, 2002.Google Scholar
  142. 142.
    Weinberg OK, Marquez-Garban DC, Fishbein MC, Goodglick L, Garban HJ, Dubinett SM, Pietras RJ. Aromatase inhibitors in human lung cancer therapy. Cancer Res 65 (24): 11287–11291, 2005.PubMedCrossRefGoogle Scholar
  143. 143.
    Fiorelli G, Picariello L, Martineti V, Tonelli F, Brandi ML. Estrogen synthesis in human colon cancer epithelial cells. J Steroid Biochem Mol Biol 71 (5–6): 223–230, 1999.PubMedCrossRefGoogle Scholar
  144. 144.
    Ellem SJ, Risbridger GP. Aromatase and prostate cancer. Minerva Endocrinol 31 (1): 1–12, 2006.PubMedGoogle Scholar
  145. 145.
    Polakis P. The oncogenic activation of beta-catenin. Curr Opin Genet Dev 9 (1): 15–21, 1999.PubMedCrossRefGoogle Scholar
  146. 146.
    Henderson BR. Nuclear-cytoplasmic shuttling of APC regulates beta-catenin subcellular localization and turnover. Nat Cell Biol 2 (9): 653–660, 2000.PubMedCrossRefGoogle Scholar
  147. 147.
    Clevers H. Colon cancer-understanding how NSAIDs work. NEJM 354 (7): 761–763, 2006.PubMedCrossRefGoogle Scholar
  148. 148.
    Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS. Prostaglandin E2 promotes colon cancer cell growth through a GS-axin-beta-catenin signaling axis. Science 310: 1504–1510, 2005.PubMedCrossRefGoogle Scholar
  149. 149.
    He T-C. Association of COX-2 and PPARs in carcinogenesis and chemoprevention. In: RE Harris, ed. COX-2 Blockade in Cancer Prevention and Therapy. Human Press, Totowa, NJ, 2002.Google Scholar
  150. 150.
    Folkman J. Angiogenesis. Annu Rev Med 57: 1–18, 2006.PubMedCrossRefGoogle Scholar
  151. 151.
    Gallo O, Franchi A, Magnelli L, Sardi I, Vannacci A, Boddi V, Chiarugi V, Masini E. Cyclooxygenase-2 pathway correlates with VEGF expression in head and neck cancer. Implications for tumor angiogenesis and metastasis. Neoplasia 3: 53–61, 2001.PubMedCrossRefGoogle Scholar
  152. 152.
    Masferrer JL, Koki A, Seibert K, Zweifel BS, Settle SL, Woerner BM. Antiangiogenic and antitumor acivities of cyclooxygenase-2 inhibitors. Cancer Res 60: 1306–1311, 2000.PubMedGoogle Scholar
  153. 153.
    Gupta RA, DuBois RN. Cyclooxygenase-2, prostaglandins, and colorectal carcinogenesis. In: RE Harris, ed. COX-2 Blockade in Cancer Prevention and Therapy. Human Press, Totowa, NJ, 2002.Google Scholar
  154. 154.
    Subbaramaiah K, Norton L, Gerald W, Dannenberg AJ. Cyclooxygenase-2 is overexpressed in HER-2/neu-positive breast cancer-evidence for involvement of AP-1 and PEA3. J Biol Chem 277: 18649–18657, 2002.PubMedCrossRefGoogle Scholar
  155. 155.
    Benoit V, Relic BG, Leval Xd X, Chariot A, Merville MP, Bours V. Regulation of HER-2 oncogene expression by cyclooxygenase-2 and prostaglandin E2. Oncogene 23 (8): 1631–1635, 2004.PubMedCrossRefGoogle Scholar
  156. 156.
    Tsujii M, Kuwano S, DuBois RN. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci USA 94: 3336–3340, 1997.PubMedCrossRefGoogle Scholar
  157. 157.
    Sivula A, Talvensaari-Mattila A, Lundin J, Joensuu H, Haglund C, Ristimaki A, Turpeenniemi-Hujanen T. Association of cyclooxygenase-2 and matrix metalloproteinase-2 expression in human breast cancer. Breast Cancer Res Treat 89 (3): 215–220, 2005.PubMedCrossRefGoogle Scholar
  158. 158.
    Byun JH, Lee MA, Roh SY, Shim BY, Hong SH, Ko YH, Ko SJ, Woo IS, Kang JH, Hong YS, Lee KS, Lee AW, Park GS, Lee KY. Association between cyclooxygenase-2 and matrix metalloproteinase-2 expression in non-small cell lung cancer. Jpn J Clin Oncol 36 (5): 263–268, 2006.PubMedCrossRefGoogle Scholar
  159. 159.
    Sun WH, Sun YL, Fang RN, Shao Y, Xu HC, Xue QP, Ding GX, Cheng YL. Expression of cyclooxygenase-2 and matrix metalloproteinase-9 in gastric carcinoma and its correlation with angiogenesis. Jpn J Clin Oncol 35 (120): 707–713, 2005.PubMedCrossRefGoogle Scholar
  160. 160.
    Larkins TL, Nowell M, Singh S, Sanford GL. Inhibition of cyclooxygenase-2 decreases breast cancer cell motility, invasion and matrix metalloproteinase expression. BMC Cancer 6 (1): 181, 2006.PubMedCrossRefGoogle Scholar
  161. 161.
    Kinugasa Y, Hatori M, Ito H, Jurihara Y, Ito D, Nagumo M. Inhibition of cyclooxygenase-2 suppresses invasiveness of oral squamous cell carcinoma cell lines via down-regulation of matrix metalloproteinase-2 and CD44. Clin Exp Metastasis 21 (8): 737–745, 2004.PubMedCrossRefGoogle Scholar
  162. 162.
    Pan MR, Chuang LY, Hung WC. Nonsteroidal anti-inflammatory drugs inhibit matrix metalloproteinase-2 expression via repression of transcription in lung cancer cells. FEBS Lett 508 (3): 365–368, 2001.PubMedCrossRefGoogle Scholar
  163. 163.
    Rigas B, Shiff SJ. Nonsteroidal anti-inflammatory drugs and the induction of apoptosis in colon cells: evidence for PHS-dependent and PHS-independent mechanisms. Apoptosis 4 (5): 373–381, 1999.PubMedCrossRefGoogle Scholar
  164. 164.
    Battu S, Rigaud M, Beneytout JL. Resistance to apoptosis and cyclooxygenease-2 expression in a human adenocarcinoma cell line HT29 CL19A. Anticancer Res 18 (5A): 3579–3583, 1998.PubMedGoogle Scholar
  165. 165.
    Petersen C, Petersen S, Milas L, Lang FF, Tofilon PJ. Enhancement of intrinsic tumor cell radiosensitivity induced by a selective cyclooxygenase-2 inhibitor. Clin Cancer Res 6 (6): 2513–2520, 2000.PubMedGoogle Scholar
  166. 166.
    Johnsen JI, Lindskog M, Ponthan F, Pettersen I, Elfman L, Orrego A, Sveinbjornsson B, Kogner P. Cyclooxygenase-2 is expressed in neuroblastoma, and nonsteroidal anti-inflammatory drugs induce apoptosis and inhibit tumor growth in vivo. Cancer Res 64 (20): 7210–7215, 2004.PubMedCrossRefGoogle Scholar
  167. 167.
    Tsujii M, Dubois RN. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 83: 493–501, 1995.PubMedCrossRefGoogle Scholar
  168. 168.
    Tang X, Sun YJ, Half E, Kuo MT, Sinicrope F. Cyclooxygenase-2 overexpression inhibits death receptor 5 expression and confers resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human colon cancer cells. Cancer Res 62 (17): 4903–4908, 2002.PubMedGoogle Scholar
  169. 169.
    Totzke G, Schulze-Osthoff K, Janicke RU. Cyclooxygenase-2 (COX-2) inhibitors sensitize tumor cells specifically to death receptor-induced apoptosis independently of COX-2 inhibition. Oncogene 22 (39): 8021–8030, 2003.PubMedCrossRefGoogle Scholar
  170. 170.
    Yamanaka Y, Shiraki K, Inoue T, Miyashita K, Fuke H, Yamaguchi Y, Yamamoto N, Ito K, Sugimoto K, Nakano T. Cox-2 inhibitors sensitize human hepatocellular carcinoma cells to TRAIL-induced apoptosis. Int J Mol Med 18 (1): 41–47, 2006.PubMedGoogle Scholar
  171. 171.
    Subbaramaiah K, Chung WJ, Dannenberg AJ. Ceramide regulates the transcription of cyclooxygenase-2: evidence for involvement of extracellular signal regulated kinase-jun N-terminal kinase and p38 mitogen-activated protein kinase pathways. J Biol Chem 273: 32943–32949, 1998.PubMedCrossRefGoogle Scholar
  172. 172.
    Martin S, Phillips DC, Szekely-Szucs K, Elghazi L, Desmots F, Houghton JA. Cyclooxygense-2 inhibition sensitizes human colon carcinoma cells to Trail-induced apoptosis through clustering of DR5 and concentrating death-inducing signaling complex components into ceramide-enriched caveolae. Cancer Res 65 (24): 11447–11458, 2005.PubMedCrossRefGoogle Scholar
  173. 173.
    Staveley-O’Carroll K, Sotomayor E, Montgomery J. Induction of antigen-specific T cell anergy: an early event in the course of tumor progression. Proc Natl Acad Sci USA 95: 1178–1183, 1998.PubMedCrossRefGoogle Scholar
  174. 174.
    Pockaj BA, Basu GD, Pathangey LB, Gray RJ, Hernandez JL, Gendler SJ, Mukherjee P. Reduced T-cell and dendritic cell function is related to cyclooxygenase-2 overexpression and prostaglandin E2 secretion in patients with breast cancer. Ann Surg Oncol 11: 328–339, 2004.PubMedCrossRefGoogle Scholar
  175. 175.
    Pollard M, Luckert PH. Prolonged antitumor effect of indomethacin on autochthonous intestinal tumors in rats. J Natl Cancer Inst 70: 1103–5, 1983.PubMedGoogle Scholar
  176. 176.
    Pollard M, Luckert PH. Prevention and treatment of primary intestinal tumors in rats by piroxicam. Cancer Res 49: 6471–3, 1989.PubMedGoogle Scholar
  177. 177.
    Reddy BS, Maruyama H, Kelloff G. Dose related inhibition of colon carcinogenisis by dietary piroxicam, a nonsteroidal antiinflammatory drug, during different stages of rat colon tumor development. Cancer Res 47: 5340–6, 1987.PubMedGoogle Scholar
  178. 178.
    Reddy BS, Tokumo K, Kulkarni N, Aligia C, Kelloff G. Inhibition of colon carcinogenesis by prostaglandin synthesis inhibitors and related compounds. Carcinogenesis 13: 1019–23, 1992.PubMedCrossRefGoogle Scholar
  179. 179.
    Karmali RA, Marsh J, Fuchs C. Effect of omega-3 fatty acids on growth of a rat mammary tumor. J Natl Cancer Inst 73: 457–461, 1984.PubMedGoogle Scholar
  180. 180.
    Duperron C, Castonguay A. Chemopreventive efficacies of aspirin and sulindac against lung tumorigenesis in A/J mice. Carcinogenesis 18: 1001–1006, 1997.PubMedCrossRefGoogle Scholar
  181. 181.
    Rose DP, Connolly JM. Effects of fatty acids and eicosanoid synthesis inhibitors on the growth of two human prostate cancer cell lines. Prostate 18: 243–254, 1991.PubMedCrossRefGoogle Scholar
  182. 182.
    Kelloff GJ, Steele VE, Sigman CC. Chemoprevention of cancer by NSAIDs and selective COX-2 blockade. In: RE Harris, ed. COX-2 Blockade in Cancer Prevention and Therapy. Humana Press, Totowa, NJ, pp. 279–300, 2002.CrossRefGoogle Scholar
  183. 183.
    Kawamori T, Rao CV, Siebert K, Reddy BS. Chemopreventive activity of celecoxib, a specific cyclooxygenase 2 inhibitor, against colon carcinogenesis. Cancer Res 58: 409–412, 1998.PubMedGoogle Scholar
  184. 184.
    Harris RE, Alshafie GA, Abou-Issa H, Seibert K. Chemoprevention of breast cancer in rats by celecoxib, a specific cyclooygenase-2 (COX-2) inhibitor. Cancer Res 60: 2101–2103, 2000.PubMedGoogle Scholar
  185. 185.
    Harris RE, Beebe-Donk J, Doss H, Burr-Doss D. Aspirin, ibuprofen, and other non-steroidal anti-inflammatory drugs in cancer prevention: a critical review of non-selective COX-2 blockade (Review). Oncology Reports 13: 559–583, 2005.PubMedGoogle Scholar
  186. 186.
    Paganini-Hill A, Chao A, Ross RK, Henderson BE. Aspirin use and chronic diseases: a cohort study of the elderly. Br Med J 299: 1247–1250, 1989.Google Scholar
  187. 187.
    Thun MJ, Namboodiri MM, Heath CW Jr. Aspirin use and reduced risk of fatal colon cancer. N Engl J Med 325: 1593, 1991.PubMedCrossRefGoogle Scholar
  188. 188.
    Gridley G, McLaughlin JK, Ekbom A. Incidence of cancer among patients with rheumatoid arthritis. J Natl Cancer Inst 85: 307–311, 1993.PubMedCrossRefGoogle Scholar
  189. 189.
    Pinczowski D, Ekbom A, Baron J, Yuen J, Adami H-O. Risk factors for colorectal cancer in patients with ulcerative colitis: a case-control; study. Gastroentology 107: 117–120, 1994.Google Scholar
  190. 190.
    Schreinemachers DM, Everson RB. Aspirin use and lung, colon, and breast cancer incidence in a prospective study. Epidemiology 5: 138–146, 1994.PubMedCrossRefGoogle Scholar
  191. 191.
    Giovannucci E, Rimm EB, Stampfer MJ, Colditz GA, Asherio A, Willett WC. Aspirin use and the risk for colorectal cancer and adenoma in male health professionals. Ann Intern Med 121: 241–246, 1994.PubMedGoogle Scholar
  192. 192.
    Giovannucci E, Egan KM, Hunter DJ, Stampfer MJ, Colditz GA, Willett WC, Speizer FE. Aspirin and the risk of colorectal cancer in women. N Engl J Med 333: 609–614, 1995.PubMedCrossRefGoogle Scholar
  193. 193.
    Kauppi M, Pukkala E, Isomaki H. Low incidence of colorectal cancer in patients with rheumatoid arthritis. Clin Exp Rheumatol 14: 551–553, 1996.PubMedGoogle Scholar
  194. 194.
    Smalley W, Ray WA, Daugherty J, Griffin MR. Use of nonsteroidal anti-inflammatory drugs and incidence of colorectal cancer. Arch Intern Med 159: 161–166, 1999.PubMedCrossRefGoogle Scholar
  195. 195.
    Collet JP, Sharpe C, Belzile E, Boivin J-F, Hanley J, Abenhaim L. Colorectal cancer prevention by nonsteroidal anti-inflammatory drugs: effects of dosage and timing. Br J Cancer 81: 62–68, 1999.PubMedCrossRefGoogle Scholar
  196. 196.
    Langman MJ, Cheng KK, Gilman EA, Lancashire RJ. Effect of anti-inflammatory drugs on overall risk of common cancer: case-control study in a general practice research database. Br Med J 320: 1642–1646, 2000.CrossRefGoogle Scholar
  197. 197.
    Garcia Rodriguez LA, Huerta-Alvarez C. Reduced risk of colorectal cancer among long-term users of aspirin and non-aspirin nonsteroidal anti-inflammatory drugs. Epidemiology 12: 88–93, 2001.PubMedCrossRefGoogle Scholar
  198. 198.
    Peleg I, Maibach H, Brown SH, Wilcox CM. Aspirin and nonsteroidal anti-inflammatory drug use and the risk of subsequent colorectal cancer. Arch Intern Med 154: 394–399, 1994.PubMedCrossRefGoogle Scholar
  199. 199.
    Muscat J, Stellman SD, Wynder EL. Nonsteroidal anti-inflammatory drugs and colorectal cancer. Cancer 74: 1847–1854, 1994.PubMedCrossRefGoogle Scholar
  200. 200.
    Reeves MJ, Newcomb PA, Trentham-Diez A, Storer BE, Remington P. Nonsteroidal anti-inflammatory drug use and protection against colorectal cancer in women. Cancer Epidemiol Biomarkers Prev 5: 955–960, 1996.PubMedGoogle Scholar
  201. 201.
    LaVecchia C, Negri E, Francheschi S, Conti E, Montella M, Giacosa A, et al. Aspirin and colorectal cancer. Br J Cancer 76: 675–677, 1997.Google Scholar
  202. 202.
    Rosenberg L, Louik C, Shapiro S. Nonsteoridal anti-inflammatory drug use and reduced risk of large bowel carcinoma. Cancer 82: 3236–33, 1998.CrossRefGoogle Scholar
  203. 203.
    Friedman GD, Coates AO, Potter JD, Slattery ML. Drugs and colon cancer. Pharmacoepidemol Drug Safety 7: 99–106, 1998.CrossRefGoogle Scholar
  204. 204.
    Coogan PF, Rosenberg L, Louik C, Zauber AG, Stolley PD, Strom BL, et al. NSAIDs and risk of colorectal cancer according to presence or absence of family history of the disease. Cancer Causes Control 11: 249–255, 2000.PubMedCrossRefGoogle Scholar
  205. 205.
    Rahme E, Barkum AN, Goubouti Y, Bardou M. The cyclooxygenase2 selective inhibitors rofecoxib and celecoxib prevent colorectal neoplasia occurrence and recurrence. Gastroenterology 125 (2): 404–412, 2003.PubMedCrossRefGoogle Scholar
  206. 206.
    Thun MJ, Henley SJ. Epidemiology of nonsteroidal anti-inflammatory drugs in colorectal cancer. In: RE Harris, ed. COX-2 Blockade in Cancer Prevention and Therapy. Humana Press, Totowa, NJ, pp. 35–55, 2002.CrossRefGoogle Scholar
  207. 207.
    Slattery ML, Samowitz W, Hoffman M, Ma KN, Levin TR, Neuhausen S. Aspirin, NSAIDs, and colorectal cancer: possible involvement in an insulin-related pathway. Cancer Epidemiol Biomarkers Prev 13 (4): 538–545, 2004.PubMedGoogle Scholar
  208. 208.
    Thun MJ, Namboodiri MM, Calle EE, Flanders WD, Heath CW. Aspirin use and risk of fatal cancer. Cancer Res 53: 1322–1327, 1993.PubMedGoogle Scholar
  209. 209.
    Egan KM, Stampfer MJ, Giovannucci E, Rosner BA, Colditz GA. Prospective study of regular aspirin use and the risk of breast cancer. J Natl Cancer Inst 88: 988–993, 1996.PubMedCrossRefGoogle Scholar
  210. 210.
    Harris RE, Kasbari S, Farrar WB. Prospective study of nonsteroidal anti-inflammatory drugs and breast cancer. Oncology Reports 6: 71–73, 1999.PubMedGoogle Scholar
  211. 211.
    Johnson TJ, Anderson KI, Lazovich D, Folsom AR. Association of aspirin and other nonsteroidal anti-inflammatory drug use with incidence of postmenopausal breast cancer. Proc Amer Assoc Cancer Res 42: Abstract 4098, 763, 2001.Google Scholar
  212. 212.
    Harris RE, Chlebowski RT, Jackson RD, Frid DJ, Ascensco JL, Anderson G, Loar A, Rodabough RJ, White E, McTiernan A. Breast cancer and nonsteroidal anti-inflammatory drugs: prospective results from the Women’s Health Initiative. Cancer Research 63: 6096–6101, 2003.PubMedGoogle Scholar
  213. 213.
    Harris RE, Namboodiri KK, Farrar WB. Epidemiologic study of non-steroidal anti-inflammatory drugs and breast cancer. Oncology Reports 2: 591–592, 1995.Google Scholar
  214. 214.
    Rosenberg L. Nonsteroidal anti-inflammatory drugs and cancer. Prev Med 24: 107–109, 1995.PubMedCrossRefGoogle Scholar
  215. 215.
    Harris RE, Namboodiri KK, Farrar WB. Nonsteroidal anti-inflammatory drugs and breast cancer. Epidemiology 7: 203–205, 1996.PubMedCrossRefGoogle Scholar
  216. 216.
    Neuget AI, Rosenbert DJ, Ahsan H, Jacobson JS, Wahid N, Hagan M, Rahman MI, Khan ZR, Chen L, Pablos-Mendez A, Shea S. Association between coronary heart disease and cancers of the breast, prostate, and colon. Cancer Epidemiol Biomarker Prev 7: 869–873, 1998.Google Scholar
  217. 217.
    Coogan PF, Rao Sr, Rosenberg L, Palmer JR, Strom BL, Zauber AG, Stolley PD, Shapiro S. The relationship of nonsteroidal anti-inflammatory drug use to the risk of breast cancer. Prev Med 29 (2): 72–76, 1999.PubMedCrossRefGoogle Scholar
  218. 218.
    Sharpe CR, Collet JP, McNutt M, Belzille E, Boivin JF, Hanley JA. Nested case control study of the effects of nonsteroidal anti-inflammatory drugs on breast cancer risk and stage. Br J Can 83: 112–120, 2000.CrossRefGoogle Scholar
  219. 219.
    Cotterchio M, Kreiger N, Steingart A, Buchan G. Nonsteroidal anti-inflammatory drug (NSAID) use and breast cancer. SER Abstract, Amer J Epidemiol 151: S72, 2000.Google Scholar
  220. 220.
    Langman MJ, Chen KK, Gilman EA, Lancashire RJ. Effect of anti-inflammatory drugs on the overall risk of common cancer: case control study in general practice research database. Br Med J 320: 1642–1646, 2000.CrossRefGoogle Scholar
  221. 221.
    Meier CR, Schmitz S, Jeck H. Association between acetaminophen or nonsteroidal anti-inflammatory drugs and risk of developing ovarian, breast, or colon cancer. Pharmacotherapy 22 (3): 303–309, 2002.PubMedCrossRefGoogle Scholar
  222. 222.
    Moorman PG, Grubber JM, Millikan RC, Newman B. Association between nonsteroidal anti-inflammatory drugs (NSAIDs) and invasive breast cancer and carcinoma in situ of the breast. Cancer Causes and Control 14: 915–922, 2003.PubMedCrossRefGoogle Scholar
  223. 223.
    Terry MB, Gammon MD, Zang FF, Tawfik H, Teitelbaum SL, Britton JA, Subbaramaiah K, Dannenberg AJ, Neuget AI. Association of frequency and duration of aspirin use and hormone receptor status with breast cancer risk. JAMA 291 (20): 2433–2440, 2004.PubMedCrossRefGoogle Scholar
  224. 224.
    Zhang Y, Coogan PF, Palmer JR, Strom BL, Rosenberg L. Use of nonsteroidal anti-inflammatory drugs and risk of breast cancer: the Case-Control Surveillance Study revisited. Am J Epidemiol 162 (2): 165–170, 2005.PubMedCrossRefGoogle Scholar
  225. 225.
    Peto R, Gray R, Collins R, Wheatley K, Hennekens C, Jamrozik K, Warlow C, Hafner B, Thompson E, Norton S. Randomised trial of prophylactic daily aspirin in British male doctors. Br Med J (Clin Res Ed) 296 (6618): 313–316, 1988.Google Scholar
  226. 226.
    Harris RE, Beebe-Donk J, Schuller HM. Chemoprevention of lung cancer by nonsteroidal anti-inflammatory drugs among cigarette smokers. Oncology Reports 9: 693–695, 2002.PubMedGoogle Scholar
  227. 227.
    Akhmedkhanov A, Toniolo P, Zeleniuch-Jacquotte A, Koenig KL, Shore RE. Aspirin and lung cancer in women. Br J Cancer 87 (11): 1337–1338, 2002.CrossRefGoogle Scholar
  228. 228.
    Moysich KB, Menezes RJ, Ronsani A, Swede H, Reid ME, Cummings KM, Falkner KL, Loween GM, Bepler G. Regular aspirin use and lung cancer risk. BMC Cancer 2(1): 31, 2002.PubMedCrossRefGoogle Scholar
  229. 229.
    Holick CN, Michaud DS, Leitzmann MF, Willett WC, Giovannucci E. Aspirin use and lung cancer in men. Br J Cancer 89 (9): 1705–1708, 2003.PubMedCrossRefGoogle Scholar
  230. 230.
    Muscat JE, Chen SQ, Richie JP Jr, Altorki NK, Citron M, Olson S, Neugut AI, Stellman SD. Risk of lung carcinoma among users of nonsteroidal anti-inflammatory drugs. Cancer 97 (7): 1732–1736, 2003.PubMedCrossRefGoogle Scholar
  231. 231.
    Roberts RO, Jacobson DJ, Girman CJ, Rhodes T, Lieber MM, Jacobsen SJ. A population based study of daily nonsteroidal anti-inflammatory drug use and prostate cancer. Mayo Clin Proc 77 (3): 219–225, 2002.PubMedGoogle Scholar
  232. 232.
    Leitzman MF, Stampfer MJ, Ma J, Chan JM, Colditz GA, Willett WC, Giovannucci E. Aspirin use in relation to risk of prostate cancer. Cancer Epidemiol Biomarkers Prev (101): 1108–1111, 2002.Google Scholar
  233. 233.
    Habel LA, Zhao W, Stanford JL. Daily aspirin use and prostate cancer risk in a large, multiracial cohort in the US. Cancer Causes Control 13 (5): 427–434, 2002.PubMedCrossRefGoogle Scholar
  234. 234.
    Nelson JE, Harris RE. Inverse association of prostate cancer and nonsteroidal anti-inflammatory drugs (NSAIDs): results of a case control study. Oncology Reports 7: 169–170, 2000.PubMedGoogle Scholar
  235. 235.
    Norrish AE, Jackson RT, McRae CU. Nonsteroidal anti-inflammatory drugs and prostate cancer progression. International Journal of Cancer 77: 511–515, 1998.CrossRefGoogle Scholar
  236. 236.
    Irani J, Ravery V, Pariente JL, Chartier-Kastler E, Lechevallier E, Soulie M, Chautar D, Coloby P, Fontaine E, Bladou F, Desgradnchampls F, Lahillot O. Effect of nonsteroidal anti-inflammatory agents and finasteride on prostate cancer risk. J Urol 168 (5): 1985–1988, 2002.PubMedCrossRefGoogle Scholar
  237. 237.
    Perron L, Bairati I, Moore L, Meyer F. Dosage, duration and timing of nonsteroidal anti-inflammatory drug use and risk of prostate cancer. Int J Cancer 106 (3): 409–415, 2003.PubMedCrossRefGoogle Scholar
  238. 238.
    Garcia Rodriguez LA, Gonzalez-Perez A. Inverse association between nonsteroidal anti-inflammatory drugs and prostate cancer. Cancer Epidemiol Biomarkers Prev 13 (4): 649–653, 2004.PubMedGoogle Scholar
  239. 239.
    Funkhouser EM, Sharp GB. Aspirin and reduced risk of esophageal carcinoma. Cancer 76 (7): 1116–1119, 1995.PubMedCrossRefGoogle Scholar
  240. 240.
    Farrow DC, Vaughan TL, Hansten PD, Stanford JL, Risch HA, Gammon MD, Chow WH, Dubrow R, Ahsan H, Mayne ST, Schoenberg JB, West AB, Rotterdam H, Fraumeni JF Jr, Blot WJ. Use of aspirin and other nonsteroidal anti-inflammatory drugs and risk of esophpageal and gastric cancer. Cancer Epidemiol Biomarkers Prev 7 (2): 97–102, 1998.PubMedGoogle Scholar
  241. 241.
    Garidou A, Tzonou A, Lipworth L, Signorello LB, Kalapothaki V, Trichopoulos D. Lifestyle factors and medical condition in relation to esophageal cancer by histologic type in a low risk population. Int J Cancer 68 (3): 295–299, 1996.PubMedCrossRefGoogle Scholar
  242. 242.
    Cheng KK, Sharp L, McKinney PA, Logan RF, Chilvers CE, Cook-Mosaffari P, Ahmed A, Day NE. A case control study of oesophageal adenocarcinoma in women: a preventable disease. Br J Cancer 83 (1): 127–132, 2000.PubMedCrossRefGoogle Scholar
  243. 243.
    Gammon MD, Terry MB, Arber N, Chow WH, Risch HA, Vaughan TL, Schoenberg JB, Mayne ST, Stanford JL, Dubrow R, Rotterdam H, West AB, Fraumeni JF Jr, Weinstein IB, Hibshoosh H. Nonsteroidal anti-inflammatory drug use associated with reduced incidence of adenocarcinomas of the esophagus and gastric cardia that overexpress cyclin D1: a population-based study. Cancer Epidemiology, Biomarkers & Prevention 13: 34–39, 2004.CrossRefGoogle Scholar
  244. 244.
    Farrow DC, Vaughan TL, Hansten PD, Stanford JL, Risch HA, Gammon MD, Chow WH, Dubrow R, Ahsan H, Mayne ST, Schoenberg JM, West AB, Rotterdam H, Fraumeni JF Jr, Blot WJ. Use of aspirin and other nonsteroidal anti-inflammatory drugs and risk of esophageal and gastric cancer. Cancer Epidemiol Biomarkers Prev 7 (2): 97–102, 1998.PubMedGoogle Scholar
  245. 245.
    Coogan PF, Rosenberg L, Palmer JR, Strom BL, Zauber AG, Stolley PD, Shapiro S. Nonsteroidal anti-inflammatory drugs and risk of digestive cancers at sites other than the large bowel. Cancer Epidemiol Biomarkers Prev 9 (1): 119–123, 2000.PubMedGoogle Scholar
  246. 246.
    Zaridze D, Borisova E, Maximovitch D, Chkhikvadze V. Aspirin protects against gastric cancer: results of a case-control study from Moscow, Russia. Int J Cancer 82 (4): 473–476, 1998.CrossRefGoogle Scholar
  247. 247.
    Akre K, Ekstrom AM, Signorello LB, Hansson LE, Nyren O. Aspirin and risk for gastric cancer: a population-based case-control study in Sweden. Br J Cancer 84 (7): 965–968, 2001.PubMedCrossRefGoogle Scholar
  248. 248.
    Anderson KE, Johnson TW, Lazovich D, Folsom AR. Association of aspirin and other nonsteroidal anti-inflammatory drug use with incidence of pancreatic cancer in a cohort of postmenopausal women. Proc Amer Assoc Cancer Res, 92d Ann Meeting, Abstract 4095, 42: 763, 2001.Google Scholar
  249. 249.
    Menezes RJ, Huber KR, Mahoney MC, Moysich KB. Regular use of aspirin and pancreatic cancer risk. BMC Public Health 2(1): 18, 2002.PubMedCrossRefGoogle Scholar
  250. 250.
    Schernhammer ES, Kang JH, Chan AT, Michaud DS, Skinner HG, Giovannucci E, Colditz GA, Fuchs CS. A prospective study of aspirin use and the risk of pancreatic cancer in women. J Natl Cancer Inst 96: 22–28, 2004.PubMedCrossRefGoogle Scholar
  251. 251.
    Jacobs EJ, Connell CJ, Rodriguez C, Patel AV, Calle EE, Thun MJ. Aspirin use and pancreatic cancer mortality in a large United States cohort. J Natl Cancer Inst 96 (7): 524–528, 2004.PubMedCrossRefGoogle Scholar
  252. 252.
    Fairfield KM, Hunter DJ, Fuchs CS, Colditz GA, Hankinson SE. Aspirin, other NSAIDs, and ovarian cancer risk (United States). Cancer Causes Control 13 (6): 535–542, 2002.PubMedCrossRefGoogle Scholar
  253. 253.
    Tzonou A, Polychronopoulou A, Hsieh CC, Rebelakos A, Karakatsani A, Trichopoulos D. Hair dyes, analgesics, tranquilizers and perineal talc application as risk factors for ovarian cancer. Int J Cancer 44 (3): 408–410, 1993.CrossRefGoogle Scholar
  254. 254.
    Cramer DW, Harlow BL, Titus-Ernstoff L, Bohlke K, Welch WR, Greer ER. Over-the-counter analgesics and risk of ovarian cancer. Lancet 351 (9096): 104–1097, 1998.PubMedCrossRefGoogle Scholar
  255. 255.
    Tavani A, Gallus S, La Vecchia C, Conti E, Montella M, Franceschi S. Aspirin and ovarian cancer, and Italian case-control study. Ann Oncol 11 (9): 1171–1173, 2000.PubMedCrossRefGoogle Scholar
  256. 256.
    Rosenberg L, Palmer JR, Rao RS, Coogan PF, Strom BL, Zauber AG, Shapiro S. A case-control study of analgesic use and ovarian cancer. Cancer Epidemiol Biomarkers Prev (9): 933–937, 2000.PubMedGoogle Scholar
  257. 257.
    Moysich KB, Mettlin C, Piver MS, Natarajan N, Menezes RJ, Swede H. Regular use of analgesic drugs and ovarian cancer risk. Cancer Epidemiol Biomarkers Prev 10(8): 903–906, 2001.PubMedGoogle Scholar
  258. 258.
    Akhmedkhanov A, Toniolo P, Zeleniuch-Jacquotte A, Kato I, Koening KL, Shore RE. Aspirin and epithelial ovarian cancer. Prev Med 33 (6): 682–687, 2001.PubMedCrossRefGoogle Scholar
  259. 259.
    Lacey JV, Sherman ME, Hartge P, Schatzkin A, Schairer C. Medication use and risk of ovarian carcinoma: a prospective study. Int J Cancer 108: 281–286, 2004.PubMedCrossRefGoogle Scholar
  260. 260.
    Castelao JE, Yuan J-M, Gago-Dominguez, Yu MC, Ross RK. Nonsteroidal anti-inflammatory drugs and bladder cancer prevention. British J Cancer 82(7): 1364–1369, 2000.CrossRefGoogle Scholar
  261. 261.
    McCredie M, Ford J, Taylor JS, Stewart JH. Analgesics and cancer of the renal pelvis in New South Wales. Cancer 49 (12): 2617–2725, 1982.PubMedCrossRefGoogle Scholar
  262. 262.
    McCredie M, Stewart JH, Fort JM. Analgesics and tobacco as risk factors for cancers of the ureter and renal pelvis. J Urol 130 (1): 28–30, 1983.PubMedGoogle Scholar
  263. 263.
    McLaughlin KJ, Blot WJ, Mehl ES, Fraumeni JF Jr. Relation of analgesic use to renal cancer: population-based findings. Natl Cancer Inst Monogr 69: 217–222, 1985.PubMedGoogle Scholar
  264. 264.
    Ross RK, Paganini-Hill A, Landolph J, Gerkins V, Henderson BE. Analgesics, cigarette smoking, and other risk factors for cancers of the renal pelvis and ureter. Cancer Res 49 (4): 1045–1048, 1989.PubMedGoogle Scholar
  265. 265.
    Chow WH, McLaughlin KJ, Linet MS, Niwa S, Madel JS. Use of analgesics and risk of renal cell cancer. Int J Cancer 59 (4): 467–470, 1994.PubMedCrossRefGoogle Scholar
  266. 266.
    Derby LE, Jick H. Acetaminophen and bladder cancer. Epidemiology 7 (4): 358–362, 1996.PubMedCrossRefGoogle Scholar
  267. 267.
    Jensen OM, Knudsen JB, Tomasson H, Sorensen BL. The Copenhagen case-control study of renal pelvis and ureter cancer: role of analgesics. Int J Cancer 44 (6): 965–968, 1989.PubMedCrossRefGoogle Scholar
  268. 268.
    Rosenberg L, Rao RS, Palmer JR, Strom BL, Zauber A, Warshauer ME, Stolley PD, Shapiro S. Transitional cell cancer of the urinary tract and renal cell cancer: relation to acetaminophen use (United States). Cancer Causes Control 9 (1): 83–88, 1998.PubMedCrossRefGoogle Scholar
  269. 269.
    Gago-Dominguez M, Yuan JM, Castelao JE, Ross RK, Yu MC. Regular use of analgesics is a risk factor for renal cell carcinoma. Br J Cancer 81 (3): 542–548, 1999.PubMedCrossRefGoogle Scholar
  270. 270.
    Linet MS, Chow WH, McLaughlin JK, Wacholder S, Yu MC, Schoenberg JB, Lynch C, Fraumeni JF Jr. Analgesics and cancers of the renal pelvis and ureter. Int J Cancer 62 (1): 15–18, 1995.PubMedCrossRefGoogle Scholar
  271. 271.
    McCredie M, Pommer W, McLaughlin JK, Stewart JH, Lindblad P, Mandel JS, Mellemgaard A, Schlehofer B, Niwa S. International renal cell cancer study. II. Analgesics. Int J Cancer 60 (3): 345–349, 1995.PubMedGoogle Scholar
  272. 272.
    Pommer W, Bronder E, Klimpel A, Helmert U, Greiser E, Molzahn M. Urothelial cancer at different tumor sites: role of smoking and habitual intake of analgesics and laxatives. Results of the Berlin Urothelial Cancer Study. Nephrol Dial Transplant 14 (12): 2892–2997, 1999.PubMedCrossRefGoogle Scholar
  273. 273.
    Harris RE, Beebe-Donk J, Namboodiri KK. Inverse association of nonsteroidal anti-inflammatory drugs and malignant melanoma among women. Oncology Reports 8: 655–657, 2001.PubMedGoogle Scholar
  274. 274.
    Prior P, Symmons DPM, Hawkins CF, Scott DL, Brown R. Cancer morbidity in rheumatoid arthritis. Ann Rheum Dis 43: 128–131, 1984.PubMedCrossRefGoogle Scholar
  275. 275.
    Gridley G, McLaughlin JK, Ekbom A, Klareskog L, Adami HO, Hacker DG, Hoover R, Fraumeni JF Jr. Incidence of cancer among patients with rheumatoid arthritis. J Natl Cancer Inst 85 (4): 258–259, 1993.CrossRefGoogle Scholar
  276. 276.
    Cerhan JR, Wallace RB, Folsom AR, Potter JD, Sellers TA, Zheng W, Langley CT. Medical history risk factors for non-Hodgkins’s lymphoma in older women. J Natl Cancer Inst 89 (11): 816–817, 1997.CrossRefGoogle Scholar
  277. 277.
    Mellemkjaer L, Linet MS, Gridley G, Frisch M, Moller H, Olsen JH. Rheumatoid arthritis and risk of cancer. Ugeskr Laeger 160 (21): 3069–3073, 1998.PubMedGoogle Scholar
  278. 278.
    Thomas E, Brewster DH, Black RJ, Macfarlane GJ. Risk of malignancy among patients with rheumatic conditions. Int J Cancer 88 (3): 497–502, 2000.PubMedCrossRefGoogle Scholar
  279. 279.
    Tavani A, La Vecchia C , Franceschi S, Serraino D, Carbone A. Medical history and risk of Hodgkin’s and non-Hodgkin’s lymphomas. Eur J Cancer Prev 9 (1): 59–64, 2000.PubMedCrossRefGoogle Scholar
  280. 280.
    Baecklund E, Ekbom A, Sparen P, Fetelius N, Kareskog L. Disease activity and risk of lymphoma in patients with rheumatoid arthritis: nested case-control study. BMJ 317: 180–181, 1998.PubMedGoogle Scholar
  281. 281.
    Tennis P, Andrews E, Bombardier C, Wang Y, Strand L, West R, Tilson R, Doi P. Record linkage to conduct an epidemiologic study on the association of rheumatoid arthritis and lymphoma in the Province of Saskatchewan, Canada. J Clin Epidemiol 46 (7): 685–695, 1993.PubMedCrossRefGoogle Scholar
  282. 282.
    Bendix G, Bjell A, Holmberg E. Cancer morbidity in rheumatoid arthritis patients treated with Proresid or parenteral gold. Scand J Rheumatol 24 (2): 79–84, 1995.PubMedGoogle Scholar
  283. 283.
    Jones M, Symmons D, Finn J, Wolfe F. Does exposure to immunosuppressive therapy increase the 10 year malignancy and mortality risks in rheumatoid arthritis? A matched cohort study. Br J Rheumatol 35 (8): 738–745, 1996.PubMedCrossRefGoogle Scholar
  284. 284.
    Bernstein L, Ross RK. Prior medication use and health history as risk factors for non-Hodgkin’s lymphoma: preliminary results from a case-control study in Los Angeles County. Cancer Res 52 (19): 5510–5515, 1992.Google Scholar
  285. 285.
    Cerhan JR, Anderson KE, Janney CA, Vachon CM, Witzig TE, HabermannTM. Association of aspirin and other nonsteroidal anti-inflammatory drug use with incidence of non-Hodgkin’s lymphoma, Int J Cancer 106: 784–788, 2003.PubMedCrossRefGoogle Scholar
  286. 286.
    Kato I, Koenig KL, Shore RE, Baptiste MS, Lillquist PP, Grizzera G, Burke JS, Watanabe H. Use of anti-inflammatory and non-narcotic analgesic drugs and risk of non-Hodgkin’s lymphoma (NHL) (United States). Cancer Causes and Control 13: 965–974, 2002.PubMedCrossRefGoogle Scholar
  287. 287.
    Holly EA, Lele C, Bracci PM, McGrath MS. Case-control study of non-Hodgkin’s lymphoma among women and heterosexual men in the San Francisco Bay Area, California. Am J Epidemiol 150 (4): 375–389, 1999.PubMedGoogle Scholar
  288. 288.
    Chang ET, Zheng T, Weir EG, Borowitz M, Mann RB, Spiegelman D, Mueller NE. Aspirin and the risk of Hodgkin’s lymphoma in a population-based case-control study. J Natl Cancer Inst 96 (4): 305–315, 2004.PubMedCrossRefGoogle Scholar
  289. 289.
    Kasum CM, Blair CK, Folsom AR, Ross JA. Nonsteroidal anti-inflammatory drug use and risk of adult leukemia. Cancer Epidemiol Biomarkers Prev 12 (6): 534–537, 2003.PubMedGoogle Scholar
  290. 290.
    Zheng W, Linet MS, Shu XO, Pan RP, Gao YT, Fraumeni JF Jr. Prior medical conditions and the risk of adult leukemia in Shanghai People’s Republic of China. Cancer Causes Control 4 (4): 361–368, 1993.PubMedCrossRefGoogle Scholar
  291. 291.
    Gonzalez-Perez A, Garcia Rodriguez LA, Lopez-Ridaura R. Effects of non-steroidal anti-inflammatory drugs on cancer sites other than the colon and rectum: a meta-analysis. BMC Cancer 3: 28, 2003.PubMedCrossRefGoogle Scholar
  292. 292.
    Waddell WR, Loughry RW. Sulindac for polyposis of the colon. J Surg Oncol 24: 83–7, 1983.PubMedCrossRefGoogle Scholar
  293. 293.
    Giardiello FM. NSAID-induced polyp regression in Familial Adenomatous Polyposis patients. Gastroenterology Clinics of North America 25: 349–61, 1996PubMedCrossRefGoogle Scholar
  294. 294.
    Suh O, Mettlin C, Petrelli N. Aspirin use, cancer, and polyps of the large bowel. Cancer 72: 1171–1177, 1993.PubMedCrossRefGoogle Scholar
  295. 295.
    Peleg I, Maibach H, Brown SH, Wilcox CM. Aspirin and nonsteroidal anti-inflammatory drug use and the risk of subsequent colorectal cancer. Arch Intern Med 154: 394–399, 1994.PubMedCrossRefGoogle Scholar
  296. 296.
    Greenberg ER, Baron JA, Freeman DH Jr, Mandel JS, Haile R. Reduced risk of large bowel adenomas among aspirin users. The Polyp Prevention Study Group. J Natl Cancer Inst 85: 912–916, 1993.PubMedCrossRefGoogle Scholar
  297. 297.
    Logan RF, Litte J, Hawtin PG, Hardcastle JD. Effect of aspirin and nonsteroidal anti-inflammatory drugs on colorectal adenomas: case-control study of subjects participating in the Nottingham faecal occult blood screening program. BMJ 307: 285–289, 1993.PubMedCrossRefGoogle Scholar
  298. 298.
    Martinez M, McPherson RS, Levin B, Annegers JF. Aspirin and other nonsteroidal anti-inflammatory drugs and risk of colorectal adenomatous polyps among endoscoped individuals. Cancer Epidemiol Biomarkers Prev 4: 703–707, 1995.PubMedGoogle Scholar
  299. 299.
    Sandler RS, Galanko JC, Murray SC, Helm JF, Woosley JT. Aspirin and nonsteroidal anti-inflammatory agents and risk for colorectal adenomas. Gastroenterology 114: 441–448, 1998.PubMedCrossRefGoogle Scholar
  300. 300.
    Breuer-Katschinski B, Nemes K, Rump B, Leiendecker B, Marr A, Breuer N, et al. Long-term use of nonsteroidal anti-inflammatory drugs and the risk of colorectal adenomas. The Colorectal Adenoma Study Group. Digestion 61: 129–134, 2000.PubMedCrossRefGoogle Scholar
  301. 301.
    Labayle D, Fischer D, Vielh P, Drouhin F, Pariente A, Bories C, Duhamel O, Troussett M, Attali P. Sulindac causes regression of rectal polyps in familial adenomatous polyposis. Gastroenterology 101: 635–639, 1991.PubMedGoogle Scholar
  302. 302.
    Giardiello FM, Hamilton SR, Krush AJ, Piantadosi S, Hylind LM, Celano P, Booker SV, Robinson CR, Offerhaus JA. Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N Engl J Med 328: 1313–6, 1993.PubMedCrossRefGoogle Scholar
  303. 303.
    Nugent KP, Farmer KC, Spigelman AD, Williams CB, Phillips RK. Randomized controlled trial of the effect of sulindac on duodenal and rectal polyposis and cell proliferation in patients with familial adenomatous polyposis. Br J Surg 80: 1618–9, 1993.PubMedCrossRefGoogle Scholar
  304. 304.
    Thun MJ, Henley SJ, Patrono C. Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst 94 (Feb 20): 252–266, 2002.PubMedGoogle Scholar
  305. 305.
    Anderson WF, Umar A, Viner JL, Hawk ET. Potential role of NSAIDs in COX-2 blockade in cancer therapy. In: RE Harris, ed. COX-2 Blockade in Cancer Prevention and Therapy. Humana Press, Totowa, NJ, pp. 313–340, 2002.CrossRefGoogle Scholar
  306. 306.
    Steinbach G, Lynch PM, Phillips RK, Wallace MB, Hawk E, Gordon G, al et. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. New Engl J Med 342: 1946–52. 2000.PubMedCrossRefGoogle Scholar
  307. 307.
    Bertagnolli MM, Eagle CJ, Hawk ET. Celecoxib recduces spradic colrectal adenomas: results from the Adenoma Prevention with Celecoxib (APC) trial. American Association for Cancer Research, 97th Annual Meeting, Abstract CP-3, page 186, 2006.Google Scholar
  308. 308.
    Arber N, Racz I, Spicak J, Zavoral M, Lechuga MJ, Gerletti P, Eagle CJ, Levin B. Chemoprevention of colorectal adenomas with celecoxib in an international randomized, placebo-controlled, double-blind trial. American Association for Cancer Research, 97th Annual Meeting, Abstract CP-4, page 186, 2006.Google Scholar
  309. 309.
    Mulshine JL, Atkinson JC, Greer RO, Papadimitrakopoulou VA, Van Waes C, Rudy S, Martin JW, Steinberg SM, Liewehr DJ, Avis I, Linnoila RI, Hewitt S, Lippman SM, Frye R, Cavanaugh PF Jr. Randomized, double-blind, placebo-controlled phase IIb trial of the cyclooxygenase inhibitor ketorolac as an oral rinse in orpharyngeal leukoplakia. Clin Cancer Res 10 (5): 1565–1671, 2004.PubMedCrossRefGoogle Scholar
  310. 310.
    Kaur BS, Khamnehei N, Iravani M, Namburu SS, Lin O, Triadofilopoulos G. Rofecoxib inhibits cyclooxygenase-2 expression and activity and reduces cell proliferation in Barrett’s esophagus. Gastroenterology 123 (1):60–67, 2002.PubMedCrossRefGoogle Scholar
  311. 311.
    Mukherjee D, Nissen SE, Topol EJ. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA 286 (8): 954–959, 2001.PubMedCrossRefGoogle Scholar
  312. 312.
    Harris RE, Beebe-Donk J, Alshafie GA. Reduction in the risk of human breast cancer by selective cyclooygenase-2 (COX-2) inhibitors. BMC Cancer 6: 27, 2006.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Randall E. Harris
    • 1
  1. 1.College of Medicine and School of Public Health, Center of Molecular Epidemiology and Environmental HealthThe Ohio State University Medical Center310 West 10th Avenue,Columbus

Personalised recommendations