Advertisement

Hydrogen Sulfide Removal From Gaseous Effluents

  • José Manuel Gómez
  • Domingo Cantero

Keywords

Hydrogen Sulfide Polyurethane Foam Gaseous Effluent Thiobacillus Ferrooxidans Hydrogen Sulfide Removal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anabtawi JA, Al-Jarallah AM, Aitani AM. 1992. Potential for diesel fuel production by hydroprocessing of middle distillates. Energy Sources 14: 155-167.CrossRefGoogle Scholar
  2. Anerousis JP, Whtitman SK. 1984. An updated examination of gas sweetening by the iron sponge process. SPE 13280, Houston, Texas.Google Scholar
  3. Armentia H, Webb C. 1992. Ferrous sulfate oxidation using Thiobacillus ferrooxidans cells immobilized in polyurethane foam support particles. Appl Microbiol Biotechnol 36: 697-700.CrossRefGoogle Scholar
  4. Asai S, Konishi Y, Yabu T. 1990. Kinetics of absorption of hydrogen sulfide into aqueous ferric sulfate solutions. AIChE J 36: 1331-1338.CrossRefGoogle Scholar
  5. Astarita G, Savage DW, Longo JM. 1983. Gas treating with chemical solvents. John Wiley & Sons, New York.Google Scholar
  6. Atkinson B. 1981. Immobilized biomass – a basis for process development in wastewater treatment. In: Cooper PF, Atkinson B, eds. Biological fluidized bed treatment of water and wastewater. Ellis Horwood, Chichester, 22-34.Google Scholar
  7. Berzaczy L, Niedermayer E, Kloimstein L, Windperger A. 1990. Biological exhaust gas purification in the rayon fiber manufacture. Chem Biochem Eng Q 2: 201-203.Google Scholar
  8. Berzaczy L, Etzenberger W, Kloimstein L, Niedermayer E, Schmidt A, Windsperger A. 1990. Waagner Biro Aktiengesellschaft, Glanzstoff Austria GesmbH. Procedure for microbiological transformation of sulfur containing harmful components in exhaust gases. US Patent 4,968,622.Google Scholar
  9. Burgess JE, Parsons SA, Stuetz RM. 2001. Developments in odor control and waste gas treatment biotechnology: a review. Biotechnol Adv 19: 35-63.PubMedCrossRefGoogle Scholar
  10. Candehead P, Sublette KL. 1990. Oxidation of hydrogen sulfide by Thiobacilli. Biotechnol Bioeng 35: 1150-1154.CrossRefGoogle Scholar
  11. Carnell P. 1986. Gas sweetening with a new fixed bed absorbent. In: Proceedings of Laurance Reid Gas Conditioning Conference. University of Oklahoma, Norma OK, 3-5.Google Scholar
  12. Carranza F, García MJ. 1990. Kinetic comparison of support materials in the bacteria ferrous iron oxidation in a packed-bed columns. Biorecovery 2: 15-27.Google Scholar
  13. Cho K, Hirai M, Shoda M. 1992. Degradation of hydrogen sulfide by Xanthomonassp. strain DY44 isolated from peat. Appl Environ Microbiol 58: 1183-1189.PubMedGoogle Scholar
  14. Cho K, Zhang L, Hirai M, Shoda M. 1991. Removal characteristics of hydrogen sulfide and methanethiol by Thibacillus sp. J Ferm Bioeng 71: 44-49.CrossRefGoogle Scholar
  15. del Olmo C, Alcon A, Santos VE, García-Ochoa F. 2005. Modelling the production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfuration: influence of media composition Enzyme Microb Technol 37: 157-166.CrossRefGoogle Scholar
  16. Dillon ET. 1991. Gas sweetening with a novel and selective alkanolamine. In: Proceeding of the 17th GPA Annual Convention.Google Scholar
  17. Dobbs JB. 1986. Gas sweetening with an effective one-step process. In: Proceedings of 1986 Gas Conditioning Conference, University of Oklahoma, Norma OK.Google Scholar
  18. European Union 1998. EU, Directive 98/70/EC.Google Scholar
  19. Fong HL, Kushner DS, Scott RT. 1987. Gas desulfurization using Sulferox. In: Proceedings of Laurence Reid Gas Conditioning Conference, University of Oklahoma, Norman OK, 2-4.Google Scholar
  20. Frazier HD, Kohl AL. 1950. Selective absorption of H2S from gas streams. Ind Eng Chem 42: 2282-2292.CrossRefGoogle Scholar
  21. Freund MS, Shreve GA, Wilisch WCA, Lewis NS. 1994. H2S Chemistry involved in liquid redox processes: mechanisms of reactions, new ligands and new sensors. In: American Institute of Chemical Engineers, Atlanta, Georgia, 17-21.Google Scholar
  22. Gadre RV. 1989. Removal of hydrogen sulfide from biogas by chemoautotrophic fixed-film bioreactor. Biotechnol Bioeng 34: 410-414.CrossRefGoogle Scholar
  23. García MJ, Palencia I, Carranza F. 1989. Biological ferrous iron oxidation in packed-bed columns with low-grade sulfide mineral as support. Process Biochem 24: 84-87.Google Scholar
  24. Goar BG, Lagas JA, Borsboom J, Heijkoop G. 1991. Superclaus Updates: How the process is performing worldwide. In: British Sulfur’s 19th International Conference, New Orleans.Google Scholar
  25. Gómez JM, Caro I, Cantero D. 1996. Kinetic equation for growth of Thiobacillus ferrooxidans in submerged culture over aqueous ferrous sulfate solutions. J Biotechnol 48: 147-152.CrossRefGoogle Scholar
  26. Gómez JM, Cantero D, Webb C. 2000. Immobilization of Thiobacillus ferrooxidanscells on nickel alloy fibre for ferrous sulfate oxidation. Appl Microbiol Biotechnol 53: 722-725.CrossRefGoogle Scholar
  27. Grishin SI, Tuovinen OH. 1988. Fast kinetics of Fe+ 2 oxidation in packed-bed reactors. Appl Environ Microbiol 54: 3092-3100.PubMedGoogle Scholar
  28. Hardison LC. 1992. Update on LO-CAT process developments and commercial experience. In: GRI Liquid Redox Sulfur Recovery Conference, AustinGoogle Scholar
  29. Hass RW, Ingalls MN, Trinker TA, Goar BG, Purgason RS. 1981. Process meets sulfur recovery needs. Hydro Process 60: 104-107.Google Scholar
  30. Imaizumi T. 1986. Some industrial applications of inorganic microbial oxidation in Japan. Biotechnol Bioeng Sym 16: 363-371.Google Scholar
  31. Janssen AJH, de Hoop K, Buisman CJN. 1997. The removal of H2S from air at a petrochemical plant. In: Proceedings of International Symposium Biological Waste Cleaning, Maastricht..Google Scholar
  32. Janssen AJH, Arena B, Kijlstra WS. 2000. New developments of THIOPAQ technology for the removal of H2S from gaseous steams. In: Proceedings of Sulfur’2000, San Francisco.Google Scholar
  33. Janssen AJH, Ruitenberg R, Buisman CJN. 2001. Industrial applications of new sulfur biotechnology. Water Sci Technol 44: 85-90.PubMedGoogle Scholar
  34. Jensen AB, Webb C. 1995. Treatment of H2S containing gases: a review of microbiological alternatives. Enzyme Microb Technol 17: 2-10.CrossRefGoogle Scholar
  35. Kai T, Takahashi T, Shirakawa Y, Kawabata Y. 1990. Decrease in iron oxidizing activity of Thiobacillus ferrooxidans adsorbed on activated carbon. Biotechnol Bioeng 36: 1105-1109.CrossRefGoogle Scholar
  36. Karamanev DG. 1991. Model of the biofilm structure of Thiobacillus ferrooxidans.J Biotechnol 20: 51-64.CrossRefGoogle Scholar
  37. Karamanev DG, Nikolov LN. 1988. Influence of some physicochemical parameters on bacterial activity of biofilm: ferrous iron oxidation by Thiobacillus ferrooxidans. Biotechnol Bioeng 31: 295-299.CrossRefGoogle Scholar
  38. Ketner R, Liermann N. 1987. MODOP [Mobil Oil Direct Oxidation Process] – a new process to reduce emissions of Claus units. Erdgas Kohle 103: 520-524.Google Scholar
  39. Kohl AL. 1951. Selective H2S Absorption-A review of available processes. Petrol Processing 6: 26-31.Google Scholar
  40. Kohl A, Nielsen R. 1997. Gas purification. Gulf Publishing Company.Google Scholar
  41. Lagas JA, Borsboom J, Berben PH. 1988. Superclaus-The Answer to Claus plant limitations. In: Canadian Chemical Engineering Conference, Edmonton, Canada.Google Scholar
  42. Leduc LG, Ferroni FG. 1994. The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiol Rev 14: 103-120.CrossRefGoogle Scholar
  43. Magota H, Shiratori Y. 1988. Dowa Mining. Treatment of sour natural gas containing hydrogen sufide. Japanese Patent 63,205,124.Google Scholar
  44. Maka A, Cork DJ. 1990. Introduction to the sulfur microorganisms and their applications in the environment and industry. Dev Ind Microbiol 31: 99-102.Google Scholar
  45. Manning WP, Rehm SJ, Schmuhl JL. 1981. Method of removing hydrogen sulfide form gas mixtures. US Patent 4,276,271.Google Scholar
  46. Mesa MM, Andrades JA, Macías M, Cantero D. 2004. Biological oxidation of ferrous iron: study of bioreactor efficiency. J Chem Technol Biotechnol 79: 163-170.CrossRefGoogle Scholar
  47. Miller FE, Kohl AL. 1953. Selective absorption of hydrogen sulfide. Oil Gas J 51: 175-183.Google Scholar
  48. Nakamura K, Noike T, Matsumoto J. 1986. Effect of operation conditions on biological Fe+ 2 oxidation with rotating biological contactors. Water Res 20: 73-77.CrossRefGoogle Scholar
  49. Nemati M, Webb C. 1996. Effect of ferrous iron concentration on the catalytic activity of immobilized cells of Thiobacillus ferrooxidans. Appl Microbiol Biotechnol 46: 250-255.CrossRefGoogle Scholar
  50. Nemati M, Harrion STL, Hansford GS, Webb C. 1998. Biological oxidation of ferrous sulfate by Thiobacillus ferrooxidans: a review on the kinetics aspects. Biochem Eng J 1: 171-190.CrossRefGoogle Scholar
  51. Neumann DW, Lynn S. 1984. Oxidative absorption of H2S and O2 by iron chelate solutions. AIChE J 30: 62-67.CrossRefGoogle Scholar
  52. Neumann W, Röckauf H, Volk N, Michael A, Forkmann R. 1990. Method for removal of hydrogen sulfide from a combustible waste gas. European patent EP 402,704.Google Scholar
  53. Nikolov LN, Karamanev DG. 1987. Experimental study of the inverse fluidized bed biofilm reactor. Can J Chem Eng 65: 214-217.CrossRefGoogle Scholar
  54. Nikolov LN, Mehochev D, Dimitrov D. 1986. Continous bacterial ferrous iron oxidation by Thiobacillus ferrooxidans in rotating biological contactors. Biotechnol Lett 8: 707-710.CrossRefGoogle Scholar
  55. Olem H, Unz RF. 1977. Acid mine drainage treatment with rotating biological contactors. Biotechnol Bioeng 19: 1475-1491.CrossRefGoogle Scholar
  56. Olem, H. and Unz, R.F. 1980. Rotating-disc biological treatment of acid mine drainage. J Wat Pollut Control Fed 52: 257-269.Google Scholar
  57. Pagella C, Silvestri P, De Faveri DM. 1996. H2S gas treatment with Thiobacillus ferrooxidans: overall process performance and the chemical step. Chem Eng Res Des 74: 123-132.Google Scholar
  58. Pagella C, Zambelli L, Silvestri P, De Faveri DM. 1996. Hydrogen sulfide gas treatment with Thiobacillus ferrooxidans. Process performance and stability. Chem Eng Technol 19: 378-385.CrossRefGoogle Scholar
  59. Pagella C, Perego P, Zilli M. 1996. Biotechnological H2S gas treatment with Thiobacillus ferrooxidans. Chem Eng Technol 19: 78-88.Google Scholar
  60. Pogliani C, Donati E. 2000. Immobilization of Thiobacillus ferrooxidans: importance of jarosite precipitation. Process Biochem 35: 997-1004.CrossRefGoogle Scholar
  61. Satoh H, Yoshizawa J, Kametani S. 1988. Bacteria help desulfurize gas. Hydrocarbon Proc Int Ed 67: 76D–76F.Google Scholar
  62. Schaack JP, Chan F. 1989. Hydrogen sulfide scavenging-1. Formaldehyde-methanol, metallic oxide agents head scavengers list processes. Oil Gas J 87: 51-55.Google Scholar
  63. Selvaraj PT, Litle MH, Kaufman EN. 1997. Biodesulfurization of flue gases and other sulfate/sulfite waste streams using immobilized mixed sulfate-reducing bacteria. Biotechnol Progress 13: 583-589.CrossRefGoogle Scholar
  64. Shennan JL. 1996. Microbial attack on sulfur-containing hydrocarbons: implications for the biodesulfurization of oils and coals. J Chem Technol Biotechnol 67: 109-123.CrossRefGoogle Scholar
  65. Sivalls CR. 1982. Slurrisweet acid gas treating process- In: Proceedings of Gas Conditioning Conference, University of Oklahoma, Norman OK.Google Scholar
  66. Smith RM, Martell AE. 1989. Critical stabilility constants. In: Inorganic Complexes, Vol 4, Plenum Press, New York.Google Scholar
  67. Sonta H, Shiratori T. 1990. Dowa Mining Co. Ltd. Method of treating H2S containing gases. US Patent 4,931,262.Google Scholar
  68. Sublette KL. 1987. Aerobic oxidation of hydrogen sulfide by Thiobacillus denitrificans.Biotechnol Bioeng 29: 690-695.CrossRefGoogle Scholar
  69. Sublette KL, Sylvester ND. 1987a. Oxidation of hydrogen sulfide by Thiobacillus denitrificans: desulfurization of natural gas. Biotechnol Bioeng 29: 249-257.CrossRefGoogle Scholar
  70. Sublette KL, Sylvester ND. 1987b. Oxidation of hydrogen sulfide by continuous cultures of Thiobacillus denitrificans. Biotechnol Bioeng 29: 753-758.CrossRefGoogle Scholar
  71. Sublette KL, Sylvester ND. 1987c. Oxidation of hydrogen sulfide by mixed cultures of Thiobacillus denitrificans and heterotrophs. Biotechnol Bioeng 29: 759-761.CrossRefGoogle Scholar
  72. Wichlacz PL. 1981. Fixed film biokinetics of ferrous iron oxidation. Biotechnol Bioeng Symp 11: 493-504.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • José Manuel Gómez
    • 1
  • Domingo Cantero
    • 1
  1. 1.Biological and Enzymatic Reactors Research Group, Departamento de Ingeniería Química, Tecnología de Alimentos y Tecnologías del Medio Ambiente, Facultad de CienciasUniversidad de Cádiz Campus Universitario de Puerto RealPuerto Real (Càdiz)Spain

Personalised recommendations