Bioflotation And Bioflocculation Of Relevance To Minerals Bioprocessing

  • K. Hanumantha Rao
  • S. Subramanian

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anand P, Modak JM, Natarajan KA. 1996. Biobeneficiation of bauxite using Bacillus polymyxa: calcium and iron removal. Int J Miner Process 48: 51-60.CrossRefGoogle Scholar
  2. Ash C, Priest FG, Collins MD. 1993. Molecular identification of rRNA Group 3 Bacilli using a PCR probe test. Antonie van leeuwenhoek 64: 253-260.PubMedCrossRefGoogle Scholar
  3. Atkins AS, Bridgewood EW, Davis AJ. 1987. A study of the suppression of pyritic sulfur in coal flotation by Thiobacillus ferrooxidans. Coal Prep 5: 1-13.CrossRefGoogle Scholar
  4. Attia YA, Elzeky MA. 1985. Biosurface modification in the separation of pyrite from coal by froth flotation in processing and utilization of high sulfur coals. In: Attia YA, ed. Elsevier, Amsterdam, 673-682.Google Scholar
  5. Attia YA, Elzeky MA, Ismail M. 1993. Enhanced separation of pyrite from oxidized coal by froth flotation using surface modification. Int J Miner Process 37: 61-71.CrossRefGoogle Scholar
  6. Bagdigian RM, Myerson AS. 1986. The adsorption of Thiobacillus ferrooxidans on coal surfaces. Biotechnol Bioeng 28: 467-479.CrossRefGoogle Scholar
  7. Bernstein RA. 1972. Waste treatment with microbial nucleo-protien flocculating agent, US Patent No. 3,684, 706.Google Scholar
  8. Blake RC, Elizabeth AS, Howard GT. 1994. Solubilization of minerals by bacteria: Electrophoretic mobility of Thiobacillus ferrooxidans in the presence of iron, pyrite and sulfur. App Environ Microbiol 60: 3349-3357.Google Scholar
  9. Capes CE, McIlhinney AE, Sirianni AF, Puddington IE. 1973. Bacterial oxidation in upgrading pyritic coals. Can Min Metall Bull 66: 88-91.Google Scholar
  10. Chandraprabha MN, Natarajan KA, Modak JM. 2004a. Selective separation of pyrite and chalcopyrite by biomodulation. Coll Surf B 37: 93-100.CrossRefGoogle Scholar
  11. Chandraprabha MN, Natarajan KA, Somasundaran P. 2004b. Selective separation of arsenopyrite from pyrite by biomodulation in the presence of Acidithiobacillus ferrooxidans. J Colloid Interface Sci 276: 323-332.CrossRefGoogle Scholar
  12. Chandraprabha MN, Natarajan KA, Somasundaran P. 2005. Selective separation of pyrite from chalcopyrite and arsenopyrite by biomodulation using Acidithiobacillus ferrooxidans. Int J Miner Process 75: 113-122.CrossRefGoogle Scholar
  13. Chandraprabha MN, Natarajan KA. 2006. Surface chemical and flotation behavior of chalcopyrite and pyrite in the presence of Acidithiobacillus thiooxidans. Hydrometallurgy, in press.Google Scholar
  14. Chapelle FH. 2001. Ground-Water Microbiology and Geochemistry, 2 ed., Wiley, New York.Google Scholar
  15. Das A, Hanumantha Rao K, Sharma PK, Natarajan KA, Forssberg KSE. 1999. Surface chemical and adsorption studies using Thiobacillus ferrooxidans with reference to bacterial adhesion to sulfide minerals. Amils R, Ballester A, eds. Biohydrometallurgy and the environment toward the mining of the 21st century, Proceedings of the International Biohydrometallurgy Symposium IBS-99, El Escorial, Spain. Elsevier, Amsterdam, Part A, 697-707.Google Scholar
  16. Deo N, Natarajan KA. 1997a. Surface modification and biobeneficiation of some oxide minerals using Bacillus polymyxa, Min Metall Process 14: 32-39.Google Scholar
  17. Deo N, Natarajan KA. 1997b. Interaction of Bacillus polymyxa with some oxide minerals with reference to mineral beneficiation and environmental control. Miner Eng 10: 1339-1354.CrossRefGoogle Scholar
  18. Deo N, Natarajan KA. 1998. Studies on interaction of Paenibacillus polymyxa with iron ore minerals in relation to beneficiation. Int J Miner Process 55: 41-60.CrossRefGoogle Scholar
  19. Deo N, Natarajan KA, Somasundaran P. 2001. Mechanisms of adhesion of Paenibacillus polymyxa onto hematite, corundum and quartz. Int J Miner Process 62: 27-39.CrossRefGoogle Scholar
  20. Deshpande RJ, Subramanian S, Natarajan KA. 2001. Effect of bacterial interaction with Thiobacillus ferrooxidans on the floatability of spahlerite and pyrite. In: Padmanabhan NPH, Sreenivas T, Srinivas K, eds. Proceedings of the International Seminar on Mineral Processing Technology. Allied Publishers Limited, New Delhi, 159-161.Google Scholar
  21. Deshpande RJ, Subramanian S, Natarajan KA. 2004. Surface-chemical studies on pyrite and arsenopyrite using Acidithiobacillus ferrooxidans. In: Rao GV, Misra VN, eds. Proceedings of the International Seminar on Mineral Processing Technology. Allied Publishers Limited, New Delhi, 668-675.Google Scholar
  22. Devasia P, Natarajan KA, Sathyanarayana DN, Ramananda Rao G. 1993. Surface chemistry of Thiobacillus ferrooxidans relevant to adhesion on mineral surfaces. Appl Environ Microbiol 59: 4051-4055.PubMedGoogle Scholar
  23. Devasia P, Natarajan KA, Ramananda Rao G. 1996. Role of bacterial growth conditions and adhesion in the bioleaching of chalopyrite by Thiobacillus ferrooxidans.Miner Metall Process 13: 82-88.Google Scholar
  24. Dogan ZM, Ozbayoglu G, Hicyilmaz C, Sarikaya M, Ozcengiz G. 1985. Bacterial leaching versus bacterial conditioning and flotation in desulfurization of coal. In: Proceedings of the XV Int Miner Process Congr. Cannes, France, Vol 2, 304-313.Google Scholar
  25. Dogan ZM, Ozbayoglu G, Hicyilmaz C, Sarikaya M, Ozcengiz G. 1986. Bacterial leaching versus bacterial conditioning and flotation in desulfurization three different coals. In: Lawrence RW, Branion RMR, Ebner HG, eds. Fundamental and Applied Biohydrometallurgy. Elsevier, New York, 165-170.Google Scholar
  26. Dubel J, Smith RW, Misra M, Chen S. 1992. Microorganisms as chemical reagents: the hematite system. Miner Eng 5: 547-556.CrossRefGoogle Scholar
  27. Dugan PR. 1987. The function of microbial polysaccharides in bioflocculation and biosorption of metal ions. In: Attia YA, ed. Flocculation in Biotechnology and Separation Systems. Elsevier, Amsterdam, 337-350.Google Scholar
  28. Elzeky MA, Attia YA. 1987. Coal slurries desulfurization by flotation using thiophilic bacteria for pyrite depression. Coal Prep 5: 15-37.CrossRefGoogle Scholar
  29. Ehrlich EC, Brierley CL. 1990. Microbial Mineral Recovery. McGraw-Hill, New York.Google Scholar
  30. Finnerty WR, Singer ME. 1988. A microbial surfactant: Genetic engineering and applications. In: Attia A, Moudgil BM, Chander S. eds. Interfacial Phenomena in Biotechnology and Materials Processing, Elsevier, Amsterdam, 75-88.Google Scholar
  31. Gaudin AM. 1987. Principles of Mineral Dressing, 5th ed. Tata McGraw Hill, New Delhi, 231-238.Google Scholar
  32. Gary JH, Fled IL, Davis EG. 1963. Chemical and physical beneficiation of Florida phosphate slimes. USBM RI 6163, 33-34.Google Scholar
  33. Groudev SN, Groudeva VI. 1986. Biological leaching of aluminium from clays. In: Biotechnol Bioeng Symp. Wiley, New York, 91-99.Google Scholar
  34. Groudeva VI, Groudev SN. 1983. Bauxite dressing by means of Bacillus circulans.Travaux ICSOBA 13: 257-263.Google Scholar
  35. Gottschalk G. 1989. Nutrition of bacteria. In: Starr MP, ed. Bacterial Metabolism, Springer, New York, 1-10.Google Scholar
  36. Haas SR, Nascimento FR, Schneider IAH, Gaylarde C. 1999. Flocculation of fine fluorite particles with Coryevacterium xerosis. Revista de Microbiologia 30: 225-230.CrossRefGoogle Scholar
  37. Haas SR, Nascimento FR, Schneider IAH. 2000. Flocculation of fine calcite particles with Coryevacterium xerosis. In: Proceedings of the XXI Int Miner Process Congr, Rome, Vol A, 57-61.Google Scholar
  38. Hammond SM, Lambert PA, Rycroft AN. 1984. The Bacterial Cell Surface, Kapitan Szabo, Washington DC.Google Scholar
  39. Hancock IC. 1991. Microbial cell surface architecture. In: Mozes N, Handley PS, Busscher HJ, Rouxhet PG, eds. Microbial Cell Surface Analysis, VCH, New York, 22-59.Google Scholar
  40. Hanumantha Rao K, Das A, Sharma PK. 1998. Microbes adsorption on sulfide minerals and bioflotation. In: Proc Konf Mineralteknik, Föreningen Mineralteknisk Forskning, MinFo, Stockhom, 91-110.Google Scholar
  41. Hanumantha Rao K, Forssberg KSE. 2001. Minerals Bioprocessing IV. Int. J Miner Process 62: 1-332.CrossRefGoogle Scholar
  42. Harada T, Kuniyoshi N. 1985. Effects of bacterial oxidation on the floatability of pyrite, J Inst Min Metal Inst Japan 101: 719-724.Google Scholar
  43. Harris RH, Mitchell R. 1973. The role of polymers in microbial aggregation. In: Starr MP, Ingraham JL, Raffel S, eds. Annual Reviews of Microbiology, Annual Reviews Inc, Palo Alto, 27, 27-50.Google Scholar
  44. Holmes DS, Smith RW. 1995. Minerals Bioprocessing-II, The Minerals, Metals and Materials Society, Pennsylvania.Google Scholar
  45. Hosseini TR, Kolahdoozan M, Tabatabaei YSM, Oliazadeh M, Noaparast M, Eslami A, Manafi Z, Alfantazi A. 2005. Bioflotation of Sarcheshmeh copper ore using Thiobacillus ferrooxidans bacteria. Miner Eng 18: 371-374.CrossRefGoogle Scholar
  46. James AM. 1991. Charge properties of microbial cell surfaces. In: Mozes N, Handley PS, Busscher HJ, Rouxhet PG, eds. Microbial Cell Surface Analysis, VCH, New York, 221-261.Google Scholar
  47. Karavaiko GI, Avakyan ZA, Ogurtsava LV, Safanova OF. 1989. Microbiological processing of bauxite. In: Salley J, McGready RGL, Wichlacz L, eds. Biohydrometallurgy, CANMET, Ottawa, 93-102.Google Scholar
  48. Kargi F, Robinson JM. 1985. Biological removal of pyretic sulfur from coal by the thermophilic organism Sulfolobus acidocaldarious, Biotechnol Bioeng 27: 41-49.CrossRefGoogle Scholar
  49. Kawatra SK, Eisele TC, Bagley ST. 1989. Studies of pyrite dissolution in Pachna tanks and depression pyrite flotation by bacteria. In: Biotechnology in Minerals and Metal Processing, SME/AIME, 55-61.Google Scholar
  50. Kolahdoozan M, Tabatabaei SM, Yen WT, Hosseini Tabatabaei R, Shahverdi AR, Oliazadeh M, Noaparast M, Eslami A, Manafi Z. 2004. Bioflotation of low grade Sarcheshmeh Copper sulfide. Trans Indian Inst Met 57: 485-490.Google Scholar
  51. Long S, Wagner F. 1987. Structure and properties of biosurfactants. In: Kosaric N, Cairns WL, Gray NCC, eds. Biosurfactants and Biotechnology, Marcel Dekker, New York, 21-46.Google Scholar
  52. Lyalikova NN, Lyubavina LL. 1986. On the possibility of using a culture of Thiobacillus ferrooxidans to separate antimony and mercury sulfides during flotation. In: Lawrence RW, Branion RMR, Ebner HG, eds. Fundamental and Applied Biohydrometallurgy, Elsevier, New York, 403-406.Google Scholar
  53. Mankad T, Nauman EB. 1992. Effect of oxygen on steady state product distribution in Bacillus polymyxa fermentations. Biotechnol Bioeng 40: 413-426.CrossRefGoogle Scholar
  54. Mesquita LMS, Lins FF, Torem ML. 2003. Interaction of a hydrophobic bacterium strain in a hematite-quartz flotation system. Int J Miner Process 71: 31-44.CrossRefGoogle Scholar
  55. Misra M, Smith RW, Dubel J. 1991. Bioflocculation of finely divided minerals. In: Smith RW, Misra M, eds. Mineral Bioprocessing, The Minerals, Metals and Materials Society, Pennsylvania, 91-103.Google Scholar
  56. Misra M, Chen S, Smith RW, Raichur AM. 1993. Mycobacterium phlei as a flotation collector for hematite. Miner Metall Process 10: 170-175.Google Scholar
  57. Misra M, Chen S. 1995. The effect of growth medium of Thiobacillus ferrooxidans on pyrite and galena flotation. In: Holmes DS, Smith RW, eds. Minerals Bioprocessing II, The Minerals, Metals and Materials Society, Pennsylvania, 313-322.Google Scholar
  58. Misra M, Bukka K, Chen S. 1996. The effect of growth medium of Thiobacillus ferrooxidans on pyrite flotation. Miner Eng 9: 157-168.CrossRefGoogle Scholar
  59. Modak JM, Vasan SS, Natarajan KA. 1999. Calcium removal from bauxite using Bacillus polymyxa.Miner Metall Process 16: 6-12.Google Scholar
  60. Murphy D. 1952. Structure of levan produced by Bacillus polymyxa. Can J Chem 30: 872-878.CrossRefGoogle Scholar
  61. Nagaoka T, Ohmura N, Saiki H. 1999. A Novel mineral flotation process using Thiobacillus ferrooxidans, Appl Env Microbiol 65: 3588-3593.Google Scholar
  62. Natarajan KA, Modak JM, Anand P. 1997. Some microbiological aspects of bauxite mineralisation and beneficiation. Miner Metall Process 14: 47-53.Google Scholar
  63. Natarajan KA, Deo N. 2001. Role of bacterial interation and bioreagents in iron ore flotation. Int J Miner Process 62: 143-157.CrossRefGoogle Scholar
  64. Natarajan KA, Das A. 2003. Surface chemical studies on ‘Acidithiobacillus’ group of bacteria with reference to mineral flotation. Int J Miner Process 72: 189-198.CrossRefGoogle Scholar
  65. Ogurtsava LV, Karavaiko GI, Avakyan ZA, Korenevskii AA. 1990. Activity of various microorganisms in extracting elements from bauxite. Microbiology 58: 774-780.Google Scholar
  66. Patra P, Natarajan KA. 2003. Microbially induced flocculation and flotation for pyrite separation from oxide gangue minerals. Miner Eng 16: 965-973.CrossRefGoogle Scholar
  67. Patra P, Natarajan KA. 2004a. Microbially induced flocculation and flotation for separation of chalcopyrite from quartz and calcite. Int J Miner Process 74: 143-155.CrossRefGoogle Scholar
  68. Patra P, Natarajan KA. 2004b. Microbially induced flocculation and flotation of pyrite and sphalerite. Coll Surf B 36: 91-99.CrossRefGoogle Scholar
  69. Patra P, Natarajan KA. 2006. Surface chemical studies on selective separation of pyrite and galena in the presence of bacterial cell and metabolic products of Bacillus polymyxa, J Colloid Interface Sci 298: 720-729.PubMedCrossRefGoogle Scholar
  70. Poortinga AT, Bos R, Norde W, Busscher HJ. 2002. Electrical double layer interactions in bacterial adhesion to surfaces. Surf Sci Reports 47: 1-32.CrossRefGoogle Scholar
  71. Raichur AM, Misra M, Smith RW. 1995. Differential adhesion of hydrophobic bacteria onto coal and associated minerals. Coal Prep 16: 51-63.CrossRefGoogle Scholar
  72. Raichur AM, Misra M, Bukka K, Smith RW. 1996. Flocculation and flotation of coal by adhesion of hydrophobic Mycobacterium phlei. Coll Surf B 8: 13-24.CrossRefGoogle Scholar
  73. Raichur AM, Vijayalakshmi SP. 2003. The effect of nature of raw coal on the adhesion of bacteria to coal surface. Fuel 82: 225-231.CrossRefGoogle Scholar
  74. Rijnaarts HM, Norde W, Lyklema J, Zehnder A. 1995. The isoelectric point of bacteria as an indicator fort he presence of cell surface polymers that inhibit adhesion. Coll Surf B 4: 191-197.CrossRefGoogle Scholar
  75. Roberts JL. 1947. Reduction of ferric hydroxide by strains of Bacillus polymyxa. Soil Sci 63: 135-140.CrossRefGoogle Scholar
  76. Sadowski Z, Golab Z. 1991. Biomodification of mineral surface properties by Aspergillus niger. In: Smith RW, Misra M, eds. Mineral Bioprocessing, The Minerals, Metals and Materials Society, Pennsylvania, 81-90.Google Scholar
  77. Santhiya D, Subramanian S, Natarajan KA. 2000. Surface chemical studies on galena and sphalerite in the presence of Thiobacillus thiooxidans with reference to mineral beneficiation. Miner Eng 13: 747-763.CrossRefGoogle Scholar
  78. Santhiya D, Subramanian S, Natarajan KA, Hanumantha Rao K, Forssberg KSE. 2001a. Biomodulation of galena and sphalerite surfaces using Thiobacillus thiooxidans. Int J Miner Process 62: 121-141.CrossRefGoogle Scholar
  79. Santhiya D. 2001b. Investigations in to the surface chemistry of galena, sphalerite and sulfur minerals using Thiobacillus thiooxidans and Bacillus polymyxa. Doctoral thesis, Indian Institute of Science, Bangalore, India.Google Scholar
  80. Santhiya D, Subramanian S, Natarajan KA. 2001c. Surface chemical studies on sphalerite and galena using Bacillus polymyxa. Part I: Microbially induced mineral separation. J Colloid Interface Sci 235: 289-297.CrossRefGoogle Scholar
  81. Santhiya D, Subramanian S, Natarajan KA. 2001d. Surface chemical studies on sphalerite and galena using Bacillus polymyxa. Part II: Mechanisms of microbe-mineral interaction. J Colloid Interface Sci 235: 298-309.CrossRefGoogle Scholar
  82. Santhiya D, Subramanian S, Natarajan KA. 2001e. Role of microorganisms in surface chemical changes on sphalerite and galena. In: Ciminelli VST, Garcia Jr. O. Biohydrometallurgy: Fundamentals, Technology and Sustainable Development. Elsevier Science BV, Amsterdam, Part B, 13-22.Google Scholar
  83. Santhiya D, Subramanian S, Natarajan KA. 2002. Surface chemical studies on sphalerite and galena using extracellular polysaccharides isolated from Bacillus polymyxa. J Colloid Interface Sci 256: 237-248.PubMedCrossRefGoogle Scholar
  84. Santhiya D, Subramanian S, Natarajan KA, Indi SS. 2003. Surface chemical studies on galena and sphalerite using mineral-adapted Bacillus polymyxa. In: Lorenzen L, Bradshaw DJ, eds. Proceedings of the XXII Int Miner Process Congr, The South African Institute of Mining and Metallurgy, South Africa, Vol. 2, 902-911.Google Scholar
  85. Santhiya D, Subramanian S, Natarajan KA. 2005. Effect of bacterial proteins and polysaccharides on the selective separation of sphalerite from galena. In: Harrison STL, Rawlings DE, Petersen J, eds. Proceedings of the 16th International Biohydrometallurgy Symposium, September 25–29, Cape Town, South Africa. Produced by Compress www.compress.co.za, 325-333.Google Scholar
  86. Schneider IAH, Misra M, Smith RW. 1994. Bioflocculation of fine suspensions by Candida parapsilosis and its sonication products. In: Mulukutla PS, ed. Reagents for Better Metallurgy, TMS, Warrendale, 197-208.Google Scholar
  87. Sharma PK, Das A, Hanumantha Rao K, Forssberg KSE. 1999. Thiobacillus ferrooxidans interaction with sulfide minerals and selective chalcopyrite flotation from pyrite. In: Parekh BK, Miller JD, eds. Advances in Flotation Technology, SME/AIME, 147-165.Google Scholar
  88. Sharma PK, Hanumantha Rao K. 1999. Role of a heterotrophic Paenibacillus polymyxa bacteria in the bioflotation of some sulfide minerals. Miner Metal Process 16: 35-41.Google Scholar
  89. Sharma PK, Hanumantha Rao K, Natarajan KA, Forssberg KSE. 2000. Bioflotation of sulfide minerals in the presence of heterotrophic and chemolithotrophic bacteria. In: Massacci P, ed. Proceedings of the XXI Int Miner Process Cong, Developments in Mineral Processing, Elsevier, Vol. B, B8a 93-103.Google Scholar
  90. Sharma PK, Hanumantha Rao K, Forssberg KSE, Natarajan KA. 2001a. Surface chemical characterization of Paenibacillus polymyxa before and after adaptation to sulfide minerals. Int J Miner Process 62: 3-25.CrossRefGoogle Scholar
  91. Sharma PK, Das A, Hanumantha Rao K, Natarajan KA, Forssberg KSE. 2001b. Surface characterisation of Thiobacillus ferrooxidans cells grown under different conditions. In: Ciminelli VST, Garcia Jr. O. Biohydrometallurgy: Fundamentals, Technology and Sustainable Development. Elsevier Science BV, Amsterdam, Part B, 589-98.Google Scholar
  92. Sharma PK, Hanumantha Rao K, Forssberg KSE. 2002. Analysis of bacterial cells surface free energy by contact angle measurements. In: Subramanian S, Natarajan KA, Rao BS, Rao TRR, eds. Proceedings of the Int Seminar Miner Process Tech, Navbharath Enterprises Publishers, Bangalore, 426-434.Google Scholar
  93. Sharma PK, Hanumantha Rao K. 2002. Analysis of different approaches for evaluation of surface energy of microbial cells by contact angle goniometry. Adv Colloid Interface Sci 98: 341-463.PubMedCrossRefGoogle Scholar
  94. Sharma PK, Hanumantha Rao K. 2003. Adhesion of Paenibacillus polymyxa on chalcopyrite and pyrite: surface thermodynamics and extended DLVO theory. Coll Surf B, 29: 21-38.CrossRefGoogle Scholar
  95. Sharma PK, Das A, Hanumantha Rao K., Forssberg KSE. 2003. Surface characterization of Acidithiobacillus ferrooxidans cells grown under different conditions. Hydrometallurgy 71: 285-292.CrossRefGoogle Scholar
  96. Smith RW, Misra M. 1991a. Mineral Bioprocessing, The Minerals, Metals and Materials Society, Pennsylvania.Google Scholar
  97. Smith RW, Misra M. 1991b. Mineral Bioprocessing-An overview. In: Smith RW, Misra M, eds. Mineral Bioprocessing, The Minerals, Metals and Materials Society, Pennsylvania, 3-26.Google Scholar
  98. Smith RW, Misra M, Dubel J. 1991. Mineral bioprocessing and the future. Miner Eng 4: 1127-1141.CrossRefGoogle Scholar
  99. Smith RW, Misra M, Chen S. 1993. Adsorption of a hydrophobic bacterium onto hematite: Implications in the froth flotation of hematite. J Soc Ind Microbiol 11: 63-67.CrossRefGoogle Scholar
  100. Smith RW, Chen S, Misra M. 1994. Hydrophobic bacteria as flocculating agents for mineral suspensions. In: Moudgil BM, Somasundaran P, eds. Dispersion and aggregation: Fundamentals and applications, Engineering Foundation, New York, 499-506.Google Scholar
  101. Smith RW, Miettinen M. 2006. Microorganisms in flotation and flocculation: Future technology or laboratory curiosity? Miner Eng 19: 548-553.CrossRefGoogle Scholar
  102. Solojenken PM, Lyubavina LL, Larin VK, Bergelson LD, Dyatlovitskaya EV,. 1976. A new collector in non-sulfide ore flotation. Bulletin Nonferrous Metall 16: 21-31.Google Scholar
  103. Solojenken PM. 1979. Floatability and leaching of low grade ores with reagents of biological origin. In: Proceedings of the Int Conf Advances in Chemical Metallurgy, BARC, Bombay, India, 37/1-37/13.Google Scholar
  104. Subramanian S, Santhiya D, Natarajan KA. 2003. Surface modification studies on sulfide minerals using bioreagents. Int J Miner Process 72: 175-188.CrossRefGoogle Scholar
  105. Townsley CC, Atkins AS, Davis AJ. 1987. Suppression of pyrite sulfur during flotation by Thiobacillus ferrooxidans. Biotech Bioeng 30: 1-8.CrossRefGoogle Scholar
  106. Unz RF. 1987. Aspects of bioflocculation. In: Attia YA, ed. Flocculation in Biotechnology and Separation Systems, Elsevier, Amsterdam, 351-368.Google Scholar
  107. van Loosdrecht MCM, Lyklema J, Norde W, Schraa G, Zehnder AJB. 1987a. The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol 53: 1893-1897.Google Scholar
  108. van Loosdrecht MCM, Lyklema J, Norde W, Schraa G, Zehnder AJB. 1987b. Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl Environ Microbiol 53: 1898-1901.Google Scholar
  109. Vargas M, Kashefi K, Blunt-Harris EL, Lovely DR. 1998. Microbiological evidence of Fe (III) reduction on early Earth. Nature 395: 65-68.PubMedCrossRefADSGoogle Scholar
  110. Vasan SS, Modak JM, Natarajan KA. 2001. Some recent advances in the bioprocessing of bauxite. Int J Miner Process 62: 173-186.CrossRefGoogle Scholar
  111. Vijayalakshmi SP, Raichur AM. 2002. Bioflocculation of high-ash Indian coals using Paenibacillus polymyxa. Int J Miner Process 67: 199-210.CrossRefGoogle Scholar
  112. Vijayalakshmi SP, Raichur AM. 2003. The utility of Bacillus subtilis as a bioflocculant for fine coal. Coll Surf B 29: 265-275.CrossRefGoogle Scholar
  113. Vogt V, Gock E, Sand W. 2003. Sulfide ore flotation with extracellular polymeric substances (EPS) as biological depressant reagents. In: Lorenzen L, Bradshaw DJ, eds. Proceedings of the XXII Int Miner Process Congr, The South African Institute of Mining and Metallurgy, South Africa, Vol 2, 997-1006.Google Scholar
  114. Yelloji Rao MK, Natarajan KA, Somasundaran P. 1992a. Effect of bacterial conditioning of sphalerite and galena with Thiobacillus ferrooxidans on their floatability. In: Smith RW, Misra M, eds. Minerals Bioprocessing, TMS, Warrendale, 105-120.Google Scholar
  115. Yelloji Rao MK, Natarajan KA, Somasundaran P. 1992b. Effect of biotreatment with Thiobacillus ferrooxidans on the floatability of sphalerite and galena. Miner Metall Process 9: 95-100.Google Scholar
  116. Yelloji Rao MK, Somasundaran P. 1995. Biomodification of mineral surfaces and flotation. In: Matis KA, ed. Flotation Science and Engineering, Marcel Dekker Inc, New York, 455-472.Google Scholar
  117. Yelloji Rao MK, Natarajan KA, Somasundaran P. 1997. Growth and attachment of Thiobacillus ferro-oxidans during sulfide mineral leaching. Int J Miner Process 50: 103-210.Google Scholar
  118. Yuce AE, Mustafa Tarkan H, Zeki Dogan M. 2006. Effect of bacterial conditioning and the flotation of copper ore and concentrate. African J Biotechnol 5: 448-452.Google Scholar
  119. Zheng X, Smith RW. 1997. Dolomite depressants in the flotation of apatite and collophane from dolomite. Miner Eng 10: 537-545.CrossRefGoogle Scholar
  120. Zheng X, Smith RW, Mehta RK, Misra M, Raichur AM. 1998. Anionic flotation of apatite from dolomite modified by the presence of bacteria. Miner Metall Process 15: 52-56.Google Scholar
  121. Zheng X, Arps PJ, Smith RW. 2001. Adhesion of two bacteria onto dolomite and apatite: their effect on dolomite depression in anionic flotation. Int J Miner Process 62: 159-172.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • K. Hanumantha Rao
    • 1
  • S. Subramanian
    • 2
  1. 1.Division of Mineral ProcessingLuleå University of TechnologySE-97187 LuleåSweden
  2. 2.Department of MetallurgyIndian Institute of ScienceBangaloreIndia

Personalised recommendations