Advertisement

Laccases: Biological Functions, Molecular Structure and Industrial Applications

  • Miguel Alcalde

Keywords

Polycyclic Aromatic Hydrocarbon Electron Paramagnetic Resonance Copper Atom Kojic Acid Trametes Versicolor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcalde, M., Bulter, T. and Arnold, F.H. (2002) Colorimetric assays for biodegradation of polycyclic aromatic hydrocarbons by fungal laccases. Biomol Screening 7, 547–553CrossRefGoogle Scholar
  2. Alcalde, M., Bulter, T., Zumàrraga, M., Garcìa-Arellano, H., Mencìa, M., Plou, F.J. and Ballesteros, A. (2005) Screening mutant libraries of fungal laccases in the presence of organic solvents. Biomol. Screening. 10, 624–631.CrossRefGoogle Scholar
  3. Alexandre, G. and Zhulin, I.B. (2000) Laccases are widspread in bacteria. Trends Biotechnol. 18, 41–42PubMedCrossRefGoogle Scholar
  4. Almansa, E., Kandelbauer, A., Pereira, L., Cavaco-Paulo, A. and Guebitz, G.M. (2004) Influence of structure on dye degradation with laccase mediator systems. ocatalysis and Biotransformation 22, 315–324CrossRefGoogle Scholar
  5. Alves, A.M.C.R., Record, E., Lomascolo, A., Scholtmeijer, K., Asther, M., Wessels, J.G.H. and Wosten, H.A.B. (2004) Highly efficient production of laccase by the basidiomycete Pycnoporus cinnabarinus. p. Environ. Microbiol. 70, 6379–6384CrossRefGoogle Scholar
  6. Amitai, G., Adani, R., Sod-Moriah, G., Rabinovitz, I., Vincze, A., Leader, H., Chefetz, B., Leibovitz-Persky, L., Friesem, D. and Hadar, Y. (1998) Oxidative biodegradation of phosphorothiolates by fungal laccase. bs Letters 438, 195–200Google Scholar
  7. Bajpai, P. (2004) Biological bleaching of chemical pulps. ti. Rev. Biotechnol. 24, 1–58CrossRefGoogle Scholar
  8. Bourbonnais, R. and Paice, M.G. (1990) Oxidation of nonphenolic substrates - an expanded role for laccase in lignin biodegradation. bs Letters 267, 99–102Google Scholar
  9. Bulter, T., Alcalde, M., Sieber, V., Meinhold, P., Schlachtbauer, C. and Arnold, F.H. (2003a) Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. pl. Environ. Microbiol. 69, 987–995CrossRefGoogle Scholar
  10. Call, H.P. and Call, S. (2005) New generation of enzymatic delignification and bleaching. Pulp and Paper-Canada 106, 45–48Google Scholar
  11. Call, H.P. and Mucke, I. (1997) History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym(R)-process). J. Biotechnol. 53, 163–202CrossRefGoogle Scholar
  12. Camarero, S., Ibarra, D., Martinez, M.J. and Martinez, A.T. (2005) Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl. Environ. Microbiol. 71, 1775–1784PubMedCrossRefGoogle Scholar
  13. Chen, T, Barton SC., Binyamin G, Gao Z, Zhang Y, Kim HH and Heller A (2001) A miniature biofuel cell. J. Am. Chem. Soc. 123, 8630–8631PubMedCrossRefGoogle Scholar
  14. Claus, H. (2003) Laccases and their occurrence in prokaryotes. Arch. Microbiol. 179, 145–150PubMedGoogle Scholar
  15. Claus, H. (2004) Laccases: structure, reactions, distribution. Micron 35, 93–96PubMedCrossRefGoogle Scholar
  16. Collins, P.J., Kotterman, M.J.J., Field, J.A. and Dobson, A.D.W. (1996) Oxidation of anthracene and benzo[a]pyrene by laccases from Trametes versicolor. Appl. Environ. Microbiol 62, 4563–4567PubMedGoogle Scholar
  17. Davies, G.J.a.D. (2002) Laccase. Handbook of Metalloproteins. (ed A.Messerschmidt, et al.), pp. 1359–1368. John Wiley and Sons, LTD, New YorkGoogle Scholar
  18. Ducros, V., Brzozowski, A.M., Wilson, K.S., Brown, S.H., Ostergaard, P., Schneider, P., Yaver, D.S., Pedersen, A.H. and Davies, G.J. (1998) Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 angstrom resolution. Nature Struct. Biol. 5, 310–316PubMedCrossRefGoogle Scholar
  19. Duran, N., Rosa, M.A., D’Annibale, A. and Gianfreda, L. (2002) Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme Microb. Technol. 31, 907–931CrossRefGoogle Scholar
  20. Enguita, F.J., Martins, L.O., Henriques, A.O. and Carrondo, M.A. (2003) Crystal structure of a bacterial endospore coat component - A laccase with enhanced thermostability properties. J. Biol. Chem. 278, 19416–19425PubMedCrossRefGoogle Scholar
  21. Felby, C., Hassingboe, J. and Lund, M. (2002) Pilot-scale production of fiberboards made by laccase oxidized wood fibers: board properties and evidence for cross-linking of lignin. Enzyme Microb. Technol. 31, 736–741CrossRefGoogle Scholar
  22. Freire, R.S., Duran, N. and Kubota, L.T. (2002) Development of a laccase-based flow injection electrochemical biosensor for the determination of phenolic compounds and its application for monitoring remediation of Kraft E1 paper mill effluent. Anal. Chim. Acta 463, 229–238CrossRefGoogle Scholar
  23. Freire, R.S., Ferreira, M.M.C., Duran, N. and Kubota, L.T.(2003) Dual amperometric biosensor device for analysis of binary mixtures of phenols by multivariate calibration using partial least squares. Anal. Chim. Acta 485, 263–269CrossRefGoogle Scholar
  24. Gianfreda, L., Xu, F. and Bollag, J. (1999) Laccases: a useful group of oxidoreductive enzymes. Bioremed. J. 3, 1–25CrossRefGoogle Scholar
  25. Hakulinen, N., Kiiskinen, L.L., Kruus, K., Saloheimo, M., Paananen, A., Koivula, A. and Rouvinen, J. (2002) Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nature Struct. Biol. 9, 601–605PubMedGoogle Scholar
  26. Huttermann, A., Mai, C. and Kharazipour, A. (2001) Modification of lignin for the production of new compounded materials. Appl. Microbiol. Biotechnol. 55, 387–394PubMedCrossRefGoogle Scholar
  27. Jauregui, J., Valderrama, B., Albores, A. and Vazquez-Duhalt, R. (2003) Microsomal transformation of organophosphorus pesticides by white rot fungi. Biodegradation 14, 397–406PubMedCrossRefGoogle Scholar
  28. Johannes, C. and Majcherczyk, A. (2000) Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl. Environ. Microbiol. 66, 524–528PubMedCrossRefGoogle Scholar
  29. Johannes, C., Majcherczyk, A. and Huttermann, A. (1996) Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds. Appl. Microbiol. Biotechnol. 46, 313–317PubMedCrossRefGoogle Scholar
  30. Kiiskinen, L.L. and Saloheimo, M. (2004) Molecular cloning and expression in Saccharomyces cerevisiae of a laccase gene from the ascomycete Melanocarpus albomyces. Appl. Environ. Microbiol. 70, pp. 137–144PubMedCrossRefGoogle Scholar
  31. Kumar, S.V.S., Phale, P.S., Durani, S. and Wangikar, P.P. (2003) Combined sequence and structure analysis of the fungal laccase family. Biotechnol. Bioeng. 83, 386–394PubMedCrossRefGoogle Scholar
  32. Larsson, S., Cassland, P. and Jonsson, L.J. (2001) Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol 67, 1163–1170PubMedCrossRefGoogle Scholar
  33. Luterek, J., Gianfreda, L., Wojtas-Wasilewska, M., Cho, N.S., Rogalski, J., Jaszek, H., Malarczyk, E., Staszczak, M. and Fink-Boots, M. (1998) Activity of free and immobilized extracellular Cerrena unicolor laccase in water miscible organic solvents. Holzforschung 52, 589–595CrossRefGoogle Scholar
  34. Majcherczyk, A. and Johannes, C. (2000) Radical mediated indirect oxidation of a PEG-coupled polycyclic aromatic hydrocarbon (PAH) model compound by fungal laccase. Biochim. Biophys. Acta-Gen. Subj. 1474, 157–162Google Scholar
  35. Majcherczyk, A., Johannes, C. and Huttermann, A. (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microb. Technol. 22, 335–341CrossRefGoogle Scholar
  36. Mathiasen, T.E. Laccase and beer storage. [PCT Int.Appl.WO 9521240 A2]. 1995. Ref Type: PatentGoogle Scholar
  37. Mayer, A.M. and Staples, R.C. (2002) Laccase: new functions for an old enzyme. Phytochemistry 60, 551–565PubMedCrossRefGoogle Scholar
  38. Milligan, C. and Ghindilis, A. (2002) Laccase based sandwich scheme immunosensor employing mediatorless electrocatalysis. Electroanalysis 14, 415–419CrossRefGoogle Scholar
  39. Minussi, R.C., Pastore, G.M. and Duran, N. (2002) Potential applications of laccase in the food industry. Trends Food Sci. Technol. 13, 205–216CrossRefGoogle Scholar
  40. Nagai, M., Kawata, M., Watanabe, H., Ogawa, M., Saito, K., Takesawa, T., Kanda, K. and Sato, T. (2003) Important role of fungal intracellular laccase for melanin synthesis: purification and characterization of an intracellular laccase from Lentinula edodes fruit bodies. Microbiology-Sgm 149, 2455–2462CrossRefGoogle Scholar
  41. Onuki, T., Nogucji, M. and Mitamura, J. Oxidative hair dye composition containing laccase. [WO 0037,030. Chem. Abstr. 133, 78994m]. 2000. Ref Type: PatentGoogle Scholar
  42. Parkinson, N.M., Conyers, C.M., Keen, J.N., MacNicoll, A.D., Smith, I. and Weaver, R.J. (2003) cDNAs encoding large venom proteins from the parasitoid wasp Pimpla hypochondriaca identified by random sequence analysis. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 134, 513–520PubMedCrossRefGoogle Scholar
  43. Pickard, M.A., Roman, R., Tinoco, R. and Vazquez-Duhalt, R. (1999) Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl. Environ. Microbiol. 65, 3805–3809PubMedGoogle Scholar
  44. Piontek, K., Antorini, M. and Choinowski, T. (2002) Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-angstrom resolution containing a full complement of coppers. J. Biol. Chem. 277, 37663–37669PubMedCrossRefGoogle Scholar
  45. Pruche, F., Saint, L.P. and Bernards, B. Hair dye compositions containing hydroxystilbene. [Eur.Pat. Appl. EP 1013,260. Chem. Abstr. 133,63587g.]. 2000. Ref Type: PatentGoogle Scholar
  46. Rodakiewicz-Nowak, J., Kasture, S.M., Dudek, B. and Haber, J. (2000) Effect of various water-miscible solvents on enzymatic activity of fungal laccases. J. Mol. Catal. B-Enzymatic 11, 1–11CrossRefGoogle Scholar
  47. Servili, M., De Stefano, G., Piacquadio, P. and Sciancalepore, V. (2000) A novel method for removing phenols from grape must. Amer. J. Enol. Viticult. 51, 357–361Google Scholar
  48. Shleev, S., Tkac, J., Christenson, A., Ruzgas, T., Yaropolov, A.I., Whittaker, J.W. and Gorton, L. (2005) Direct electron transfer between copper-containing proteins and electrodes. Biosen. Bioelectron. 20, 2517–2554CrossRefGoogle Scholar
  49. Sigoillot, C., Camarero, S., Vidal, T., Record, E., Asther, M., Perez-Boada, M., Martinez, M.J., Sigoillot, J.C., Asther, M., Colom, J.F. and Martinez, A.T. (2005) Comparison of different fungal enzymes for bleaching high-quality paper pulps. J. Biotechnol. 115, 333–343PubMedCrossRefGoogle Scholar
  50. Tetsch, L., Bend, J., Janssen, M. and Holker, U. (2005) Evidence for functional laccases in the acidophilic ascomycete Hortaea acidophila and isolation of laccase-specific gene fragments. FEMS Microbiol. Letters 245, 161–168CrossRefGoogle Scholar
  51. Thurston, C.F. (1994) The structure and function of fungal laccases. Microbiology 140, pp. 19–26CrossRefGoogle Scholar
  52. Torres, E., Bustos-Jaimes, I. and Le Borgne, S. (2003) Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl. Catal. B-Environ. 46, 1–15CrossRefGoogle Scholar
  53. Ullah, M.A., Bedford, C.T. and Evans, C.S. (2000) Reactions of pentachlorophenol with laccase from Coriolus versicolor. Appl. Microbiol. Biotechnol. 53, 230–234PubMedCrossRefGoogle Scholar
  54. Valderrama, B., Oliver, P., Medrano-Soto, A. and Vazquez-Duhalt, R. (2003) Evolutionary and structural diversity of fungal laccases. Antonie Van Leeuwenhoek 84, 289–299PubMedCrossRefGoogle Scholar
  55. Widsten, P., Tuominen, S., Qvintus-Leino, P. and Laine, J.E. (2004) The influence of high defibration temperature on the properties of medium-density fiberboard (MDF) made from laccase-treated softwood fibers. Wood Sci. Technol. 38, 521–528CrossRefGoogle Scholar
  56. Xu, F., Berka, R.M., Wahleithner, J.A., Nelson, B.A., Shuster, J.R., Brown, S.H., Palmer, A.E. and Solomon, E.I. (1998) Site-directed mutations in fungal laccase: effect on redox potential, activity and pH profile. Biochem. J. 334, 63–70PubMedGoogle Scholar
  57. Yaropolov, A.I., Skorobogatko, O.V., Vartanov, S.S. and Varfolomeyev, S.D. (1994) laccase - properties, catalytic mechanism, and applicability. Appl. Biochem. Biotechnol. 49, 257–280Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Miguel Alcalde
    • 1
  1. 1.Departamento de BiocatálisisInstituto de Catálisis y Petroleoquímica, CSICCantoblancoSpain

Personalised recommendations