Advertisement

Cysteine Proteases

  • Zbigniew Grzonka
  • Franciszek Kasprzykowski
  • WiesŁaw Wiczk
Chapter

Keywords

Cysteine Protease Severe Acute Respiratory Syndrome Brown Shrimp Chitosanase Activity Pineapple Fruit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adler-Nissen, J. (1986) Enzymatic hydrolysis of food proteins. Elsevier Applied Science Publisher, London, New York.Google Scholar
  2. Aehle, W. (2004) Enzymes in industry. Production and application. Wiley-VCH, Weinheim.Google Scholar
  3. An, H., Margo, Y.P. and Seymour, T.A. (1996) Role of endogenous enzymes in surimi gelation. Trends Food Sci. Tech. 7, 321–326.CrossRefGoogle Scholar
  4. Aspmo, S.I., Horn, S.J. and Eijsink, V.G.H. (2005) Enzymatic hydrolysis of atlantic cod (Gadus morhua L.) viscera. Process Biochem. 40, 1957–1966.CrossRefGoogle Scholar
  5. Baines, B.S. and Brocklehurst, K. (1979) A necessery modification to the preparation of papain from any high-quality latex of Carica papaya and evidence for structural integrity of the enzyme produced by traditional methods. Biochem. J. 177, 541–548.PubMedGoogle Scholar
  6. Bandyopadhyay, K. and Ghosh, S. (2002) Preparation and characterization of papain-modified sesame (Sesamum indicum L.) protein isolates. J. Agric. Food Chem. 50, 6854–6857.PubMedCrossRefGoogle Scholar
  7. Barrett, A.J. (1994) Classification of peptidases. Methods Enzymol. 244, 1–15.PubMedMathSciNetCrossRefGoogle Scholar
  8. Barrett, A.J., Rawlings, N.D. and Woessner, J.F. (1998) Handbook of Proteolytic Enzymes. Academic Press, San Diego.Google Scholar
  9. Batkin, S., Taussig, S.J. and Szekerczes, J. (1988) Antimetastatic effect of bromelain with or without its proteolytic and anticoagulant activity. J. Cancer Res. Clin. Oncol. 114, 507.PubMedCrossRefGoogle Scholar
  10. Baur, X. and Fruhmann, G. (1979) Allergic reactions, including asthma, to the pineapple protease bromelain following occupational exposure. Clin. Allergy 9, 443–450.PubMedCrossRefGoogle Scholar
  11. Bordusa, F. (2002) Proteases in organic synthesis. Chem. Rev. 102, 4817–4867.PubMedCrossRefGoogle Scholar
  12. Brocklehurst, K., Baines, B.S., Kierstan, M.P.J. (1981) Papain and other constituents of Carica papaya L. Top. Enzyme Ferment. Biotechnol. 5, 262–335.Google Scholar
  13. Brömme, D. and Kaleta, J. (2002) Thiol-dependent cathepsins: Pathophysiological implications and recent advances in inhibitor design. Curr. Pharmac. Design 8, 1639–1658.CrossRefGoogle Scholar
  14. Buchman, A., Wright, R.B., Wichter, M.D., Whisler, W.W. and Bosch, A. (1985) Hemorrhagic complications after the lumbar injection of chymopapain. Neurosurgery 16, 222–224.PubMedCrossRefGoogle Scholar
  15. Chakrabarti, R. (2002) Carotenoprotein from tropical brown shrimp shell waste by enzymatic process. Food Biotechnol. 16, 81–90.CrossRefGoogle Scholar
  16. Chang, C.-L., Chang, Y.-M., Chang, C.-T. and Sung, H.-Y. (2005) Characterization of a chitosanase isolated from a commercial ficin preparation. J. Agric. Food Chem. 53, 7579–7585.PubMedCrossRefGoogle Scholar
  17. Chiellini, E., Corti, A., D’Antone, S. and Solaro, R. (2003) Biodegradation of poly(vinyl alcohol) based materials. Prog. Polym. Sci. 28, 963–1014.CrossRefGoogle Scholar
  18. Clemente, A. (2000) Enzymatic protein hydrolysates in human nutrition. Trends Food Sci. Tech. 11, 254–262.CrossRefGoogle Scholar
  19. Deeb, Z.L., Schimel, S., Daffner, R.H., Lupetin, A.R., Hryshko, F.G. and Blakley, J.B. (1985) Intervertebral disk-space infection after chymopapain injection. Am. J. Roentgenol. 144, 671–674.Google Scholar
  20. Denault, J.B. and Salvesen, G.S. (2002) Caspases: Keys in the ignition of cell death. Chem. Rev. 102, 4489–4999.PubMedCrossRefGoogle Scholar
  21. Desser, L., Rehberger, A. and Paukovits, W. (1994) Proteolytic enzymes and amylase induce cytokine production in human peripheral blood mononuclear cells in vivo. Cancer Biother. 9, 253–263.PubMedGoogle Scholar
  22. Diaz, O., Fernandéz, M., Gracia de Fernando, C.D., de la Hoz, L. and Ordòňez, J.A. (1996) Effect of the addition of papain on the dry fermented sausage proteolysis. J. Sci. Food Agric. 71, 13–21.CrossRefGoogle Scholar
  23. DiMaio, V.J. (1976) Two anaphylactic deaths after chemonucleolysis. J. Forensic Sci. 21, 187–190.PubMedGoogle Scholar
  24. Drauz, K. and Waldmann, H. (2002) Enzyme Catalysis in Organic Synthesis, Wiley-VCH, Weinheim.CrossRefGoogle Scholar
  25. Drenth, J., Jansonius, J.N., Koekoek, R., Swen, H.M. and Wolthers, B.G. (1968) Structure of papain. Nature 218, 929–932.PubMedCrossRefADSGoogle Scholar
  26. Du, W. (2003) Towards new anticancer drugs: a decade of advances in synthesis of camptothecins and related alkaloids. Tetrahedron 59, 8649–8687.CrossRefGoogle Scholar
  27. Dupret, I., David, C. and Daro, A. (2000) Biodegradation of polyester-amides using a pure strain of micro-organisms or papain I. Model compounds. Polym. Degrad. Stabil. 67, 497–505, 505–509.Google Scholar
  28. Esnault, E. (1995) Beer stabilization with papain. Brew. Guard. 124, 47–49.Google Scholar
  29. Flindt, M.L. (1978) Respiratory hazards from papain. Lancet 1, 430–432.PubMedCrossRefGoogle Scholar
  30. Ford, L.T. (1977) Chymopapain-past and present, future? Cli. Orthop. Relat. Res. 122, 367–373.Google Scholar
  31. Freddi, G., Mossotti, R. and Innocenti, R. (2003) Degumming of silk fabric with several proteases. J. Biotechnol. 196, 101–112.CrossRefGoogle Scholar
  32. Gildberg, A., Arnesen J.A. and Carlehög, M. (2002) Utilization of cod backbone by biochemical fractionation. Process Biochem. 38, 475–480.CrossRefGoogle Scholar
  33. Gill, I., López-Fandińo, S., Jorba, X. and Vulfson, E.N. (1996) Biologically active peptides and enzymatic approaches to their production. Enzyme Microb. Technol. 18, 162–183.CrossRefGoogle Scholar
  34. Godfrey, T. and West, S. Eds. (1996) Industrial enzymes, Stocton Press, New York.Google Scholar
  35. Gòmez-Juàrez, C., Casttelanos, R., Ponce-Noyala, T., Calderòn, V. and Figueroa, J. (1999) Protein recovery from slaughterhouse wastes. Bioresource Technol. 70, 129–133.CrossRefGoogle Scholar
  36. Gracia-Carreńo, F.L. (1996) Proteinase inhibitors. Trends Food Sci. 7, 197–204.CrossRefGoogle Scholar
  37. Grzonka, Z., Jankowska, E., Kasprzykowski, F., Kasprzykowska, R., Łankiewicz, L., Wiczk, W., Wieczerzak, E., Ciarkowski, J. Drabik, P., Janowski, R., Kozak, M., Jaskòlski, M. and Grubb, A. (2001) Structural studies of cysteine proteases and their inhibitors. Acta. Bioch. Pol. 48, 1–20.Google Scholar
  38. Guerard, F., Guimas, L. and Binet A. (2002) Production of tuna waste hydrolysates by a commercial neutral protease preparation. J. Mol. Catal. B-Enzym. 19-20, 489–498.CrossRefGoogle Scholar
  39. Han, Y-S., Chang, G-G., Juo, Ch-G., Lee, H-J., Yeh, S-H., Hsu, J. T-S. and Chen, X. (2005) Papain-like protease 2 (PLP2) from severe acute respiratory syndrome coronavirus (SARS-CoV): expression, purification characterization and inhibition. Biochemistry 44, 10349–10359.PubMedCrossRefGoogle Scholar
  40. Howard, G.T. (2002) Biodegradation of polyurethane: a review. Int. Biodeter. Biodegr. 49, 245–252.CrossRefGoogle Scholar
  41. Hung, T.-H., Chang, Y.-M., Sung, H.Y. and Chang, C.-T. (2002) Purification and characterization of hydrolase with chitinase and chitosanase activity from commercial steam bromelain. J. Agric. Food Chem. 50, 4666-4673.PubMedCrossRefGoogle Scholar
  42. Hunter, R.G., Henry, G.W. and Heinicke, R.M. (1957) The action of papain and bromelain on the uterus. Am. J. Ob. Gyn. 73, 867–873.Google Scholar
  43. Inoue, K., Motonaga, A., Dainaka, J., Nishimura, T., Hashii, H., Jamate, K., Ueda, F. and Kimura, K. (1994) Effect of etodolac on prostaglandin E2 biosynthesis, active oxygen generation and bradykinin formation. Prostaglandins Leukot. Essent. Fatty acids 51, 457–462.PubMedCrossRefGoogle Scholar
  44. Jones, B.L. (2005) Endoproteases of barley and malt. J. Cereal Sci. 42, 139–156.CrossRefGoogle Scholar
  45. Kamphuis, I.G., Kalk, K.H., Swarte, M.B.A. and Drenth, J. (1984) Structure of papain refined at 1.65Å resolution. J. Mol. Biol. 179, 233–256.PubMedCrossRefGoogle Scholar
  46. Kang, I.S. and Lanier, T.C. (2000) Heat induced softening of surimi gel by proteinases. In Surimi and surimi seafood, Park, J.W. (Ed.). Marcel Dekker, New York, pp. 445–474.Google Scholar
  47. Kelly, G.S. (1996) Bromelain: a literature review and discussion of its therapeutic applications. Alt. Med. Rev. 1, 243–257.Google Scholar
  48. Knill-Jones, R.P., Pearce, H., Batten, J. and Williams, R. (1970) Comparative trial of Nutrizym in chronic pancreatic insufficiency. Brit. Med. J. 4, 21–24PubMedCrossRefGoogle Scholar
  49. Koga, D., Mitsutomi, M., Kono, M. and Matsumija, M. (1999) Biochemistry of chitinases. In Chitin and chitinases, Jolles, P. and Mazzurelli, R. A. A. (Eds.). Brikhauser Verlag, Basel, Switzerland, vol 98, pp. 111–123.Google Scholar
  50. Kopp, S., Mejersjo, C. and Clemensson, E. (1983) Induction of osteoarthrosis in the guinea pig knee by papain. Oral Surg. Oral Med. Oral Pathol. 55, 259–266.PubMedCrossRefGoogle Scholar
  51. Lecaille, F., Kaleta, J. and Brőmme, D. (2002) Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem. Rev. 102, 4459–4488.PubMedCrossRefGoogle Scholar
  52. Lee, W.C. and Chen T.C. (2002) Functional characteristics of egg white solids obtained from papain treated albumen. J. Food Eng. 51, 263–266.CrossRefGoogle Scholar
  53. Leisola, M., Jokela, J., Pastinen, O., Turunen, O. and Schoemaker, H. (2001) Industrial use of enzymes, Eolas Publisher, Oxford.Google Scholar
  54. Leung-Toung, R., Li, W., Tam, T.F. and Karimian, K. (2002) Thioldependent enzymes and their inhibitors: a review. Curr. Med. Chem. 9, 979–1002.PubMedCrossRefGoogle Scholar
  55. Li, J., Du, Y., Yang, J., Feng, T., Li, A. and Chen, P. (2005) Preparation and characterization of low molecular weight chitosan and chito-oligomers by a commercial enzyme. Polym. Degrad. Stabil. 87, 441–448.CrossRefGoogle Scholar
  56. Lieske, B. and Konrad, G. (1996) Physicochemical and functional properties of whey protein as affected by limited papain proteolysis and selective ultrafiltration. Int. Dairy J. 6, 13–31.CrossRefGoogle Scholar
  57. Liu, Z., Weis, R. and Glieder, A. (2004) Enzymes from higher eukaryotes for industrial biocatalysis. Food Technol. Biotechnol. 42, 237–249.Google Scholar
  58. Mackinnon, S.E., Hudson, A.R., Llamas, F., Dellon, A.L., Kline, D.G. and Hunter, D.A. (1984) Peripheral nerve injury by chymopapain injection. J. Neurosurg. 61, 1–8.PubMedCrossRefGoogle Scholar
  59. Martorana, P.A., Wusten, B., Van Even, P., Gobel, H. and Scharper, J. (1982) A six-month study of the evolution of papain-induced emphysema in the dog. Am. Rev. Respir. Dis. 126, 898–903.PubMedGoogle Scholar
  60. Maurer, H.R., Eckert, K., Grabowska, E. and Eschman, K. (2000) Use of bromelain proteases for inhibiting blood coagulation. Patent WO PCT/EP 98/04406.Google Scholar
  61. McGrath, M.E. (1999) The lysosomal cysteine proteases. Annu. Rev. Biophys. Biomol. Struct. 28, 181–204.PubMedCrossRefGoogle Scholar
  62. Mekkes, J.R., Le Poole, I.C., Das, P.K., Kammeyer, A. and Westerhof, W. (1997) In vitro tissue-digesting properties of krill enzymes compared with fibrinolysin/DNAse, papain and placebo. Int. J. Cell. Biol. 29, 703–706.CrossRefGoogle Scholar
  63. Morita, A.H., Uchida, D.A. and Taussig, S.J. (1979) Chromatographic fractionation and characterization of the active platelet aggregation inhibitory factor from bromelain. Arch. Inter. Phar. Ther. 239, 340–350.Google Scholar
  64. Moure, A., Dominguez, H. and Parajò, C. (2005) Fractionation and enzymatic hydrolysis of soluble protein present in waste from soy processing. J. Agric. Food Chem. 53, 7600–7608.PubMedCrossRefGoogle Scholar
  65. Munzig, E., Eckert, K., Harrach, T., Graf, H. and Maurer, H.R. (1995) Bromelain protease F9 reduces the CD44 mediated adhesion of human peripheral blood limphocytes to human umbilical vein endothelial cells. FEBS Lett 351, 215–218.CrossRefGoogle Scholar
  66. Muzzarelli, R.A.A. (1996) Chitosan-based dietary foods, Carbohyd. Polym. 29, 309–316.Google Scholar
  67. Novey, H.S., Marchioli, L.E., Sokol, W.N. and Wells, I.D. (1979) Papain-induced asthma-physiological and immunological features. J. Allergy Clin. Immunol. 63, 98–103.PubMedCrossRefGoogle Scholar
  68. Otto, H.-H. and Schirmeister, T. (1997) Cysteine proteases and their inhibitors. Chem. Rev. 97, 133–171.PubMedCrossRefGoogle Scholar
  69. Paul, J., Malthouse, G. and Brocklehurst, K. (1976) Preparation of fully active ficin from Ficus glabrata by covalent chromatography and characterization of its active centre by using 2,2’-dipyridyl disulphide as a reactivity probe. Biochem. J. 159, 221–234.Google Scholar
  70. Rai, R. and Taneja, V. (1998) Papain catalysed hydantoin hydrolysis in the synthesis of amino acids. Biochem. Biophys. Res. Commun. 244, 889–892.PubMedCrossRefGoogle Scholar
  71. Rao, M.B., Tanksale, A.M., Ghatge, M.S. and Deshpande, V.V. (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol. Molec. Biol. Rev. 62, 597–635.Google Scholar
  72. Ravi Kumar, M.N.V., Muzzarelli, R.A.A., Muzzarelli, C., Sashiva, H. and Domb, A. (2004) Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 104, 6017–6084.CrossRefGoogle Scholar
  73. Rawdkuen, S., Benjakul, S., Visessanguan, W. and Lanier, T. (2004) Chicken plasma protein: Proteinase inhibitory activity and its effect on surimi gel properties. Food Res. Int. 37, 156–165.CrossRefGoogle Scholar
  74. Rosenberg, L., Lapid, O., Bogdanov–Bierezovsky, A., Glesinger, R., Krieger, Y., Silberstein, E., Sagi, A., Judkins, K. and Singer, A.J. (2004) Safety and efficacy of proteolytic enzyme for enzymatic burn debridement: a preliminary report. Burns 30, 843–850.PubMedCrossRefGoogle Scholar
  75. Rowan, A.D., Buttle, D.J. and Barrett, A.J. (1990) The cysteine proteinases of the pine apple plant. Biochem. J. 266, 869–875.PubMedGoogle Scholar
  76. Saravanabhavan, S., Thanikaivelan, P., Rao, J.R. and Nair B.U. (2005) Silicate enhancement enzymatic dehairing: a new lime-sulfite-free process for cowhides. Environ. Sci. Technol. 39, 3776–3783.PubMedCrossRefGoogle Scholar
  77. Scannell, A.G.M., Kenneally, P.M. and Arendt, E.K. (2004) Contribution of started cultures to the proteolytic process of a fermented non-dried whole muscle ham product. Int. J. Food Microbiol. 93, 219–230.PubMedCrossRefGoogle Scholar
  78. Schechter, I. and Berger, A. (1967) On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27, 157–162.CrossRefGoogle Scholar
  79. Schmidl, M.K., Taylor, S.L. and Nordlee, J.A. (1994) Use of hydrolysate-based products in special medical diets. Food Technol. 48, 77–80.Google Scholar
  80. Sentandreu, M.A., Coulis, G. and Ouali, A. (2002) Role of muscle endopeptidases and their inhibitors in meat tenderness. Trends Food Sci. Technol. 13, 398–419.CrossRefGoogle Scholar
  81. Shahidi, F. and Kamil, Y.V.A.J. (2001) Enzymes from fish and aquatic invertebrates and their application in the food industry. Food Sci. Technol. 12, 435–464.CrossRefGoogle Scholar
  82. Silva, J.G., Morais, H.A., Oliveira, A.L. and Silvestre, M.P.C. (2002) Addition effects of bovine blood globin and sodium caseinate on the characteristics of raw and cooked ham pate. Meat Sci. 63, 177–184.CrossRefGoogle Scholar
  83. Soeda, Y., Toshima, K. and Natsumura, S. (2003) Sustainable enzymatic preparation of polyaspartate using bacterial protease. Biomacromolecules 4, 196–203.PubMedCrossRefGoogle Scholar
  84. Storer, A.C. and Menard, R. (1994) Catalytic mechanism in papain family of cysteine peptidases. Methods Enzymol. 244, 486–500.PubMedCrossRefGoogle Scholar
  85. Tanabe, S., Arai, S. and Watanabe, M. (1996) Modification of wheat flour with bromelain and baking hypoallergenic bread with added ingredients. Biosci. Biotech. Bioch. 60, 1269–1272.CrossRefGoogle Scholar
  86. Tassman, G.C, Zafran, J.N, and Zayon, G.M. (1965) A double – blind crossover study of a plant proteolytic enzyme in oral surgery. J. Dent. Med. 20, 51–54.PubMedGoogle Scholar
  87. Taubert, H., Riemann, D., Kehlen, A., Meye, A., Bartel, F., John, V., Brandt, J., Bache, M., Wurl, P., Schmidt, H. and Weber, E. (2002) Expression of cathepsin B, D and L protein in juvenile idiopathic arthritis. Autoimmunity 35, 221–224.PubMedCrossRefGoogle Scholar
  88. Taussig, S.J. and Nieper, H.A. (1979) Bromelain: its use in prevention and treatment of cardiovascular disease, present status. J IAPM 6, 139–151.Google Scholar
  89. Thomas, A.R., Gondoza, H., Hoffman, L.C., Oosthuizen, V. and Naudé, R.J. (2004) The role of the proteasome, and cathepsins B, L, H and D in ostrich meat tenderization. Meat Sci. 67, 113–120.CrossRefGoogle Scholar
  90. Tinozzi, S. and Venegoni, A. (1978) Effect of bromelain on serum and tissue levels of amoxycyllin. Drugs Expt. Clin. Res. 4, 39–44.Google Scholar
  91. Tong, L. (2002) Viral proteases. Chem. Rev. 102, 4609–4626.PubMedCrossRefGoogle Scholar
  92. Turk, D., Gunčar, G., Podobnik, M. and Turk, B. (1998) Revised definition of substrate sites of papain-like cysteine proteases. Biol. Chem. 379, 137–147.PubMedCrossRefGoogle Scholar
  93. Uhlig, H. (1998) Industrial enzymes and their application. J. Wiley and Sons, New York.Google Scholar
  94. Vilhelmsson, O. (1997) The state of enzyme biotechnology in the fish processing industry. Trends Food Sci. Tech. 8, 266–271.CrossRefGoogle Scholar
  95. Watts, C., Hutchinson, G., Stern, J. and Clark, K. (1975) Comparison of intervertebral disc disease treatment by chymopapain injection and open surgery. J. Neurosurg. 42, 397–400.PubMedCrossRefGoogle Scholar
  96. Wong, M.H., Tang, L.Y. and Kwok F.S. (1996) The use of enzyme-digested soybean residue for feeding common carp. Biomed. Environ. Sci. 9, 418–423.PubMedGoogle Scholar
  97. Wu, W.U., Hettiarachchy, N.S. and Qi, M. (1998) Hydrophobicity, solubility, and emulsifying properties of soy protein peptides prepared by papain modification and ultrafiltration. J. Am. Oil Chem. Soc. 75, 8945–8950.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Zbigniew Grzonka
    • 1
  • Franciszek Kasprzykowski
    • 1
  • WiesŁaw Wiczk
    • 1
  1. 1.Faculty of ChemistryUniversity of GdańskPoland

Personalised recommendations