Advertisement

Simulation pp 57-77 | Cite as

Foundations for the Simulation of Ecosystems

  • Michael Hauhs
Part of the Sociology of the Sciences Yearbook book series (SOSC, volume 25)

Keywords

Ecosystem Management Dynamic System Theory Domesticate Species Ecosystem Research Interactive Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbab, F. (2005). “Abstract behavior types: A foundation model for components and their composition”, Science of Computer Programming, 55: 3–52.CrossRefGoogle Scholar
  2. Beven, K. (2001). “On modeling as collective intelligence”, Hydrological Processes, 15: 2205–2207.CrossRefGoogle Scholar
  3. 3.
    Bjerkenes, V. (1904). “Das Problem der Wettervorhersage, betrachtet vom Standpunkt der Physik und Mechanik”, Meteorologische Zeitschrift.Google Scholar
  4. 4.
    Bocking, S. (2004). Nature’s Experts. Science, Politics, and the Environment, New Brunswick, NJ: Rutgers University Press.Google Scholar
  5. 5.
    Bousquet, F. and C. Le Page (2004). “Multi-agent simulations and ecosystem management: A review”, Ecological Modelling, 176: 313–332.CrossRefGoogle Scholar
  6. 6.
    Brooks, R. (2001). “The relationship between matter and life”, Nature, 409: 409–411.CrossRefGoogle Scholar
  7. 7.
    Goldin, D., S.A. Smolka, P. Attie, and E. Sonderegger (2004). “Turing machines, transition systems, and interaction”, Information and Computation Journal, 194: 101–128.CrossRefGoogle Scholar
  8. 8.
    Gumm, H.P. (2003). “Universelle Coalgebra”, in T. Ihringer (ed.), Allgemeine Algebra, Lemgo, Germany: Heldermann Verlag, Appendix.Google Scholar
  9. 9.
    Hauhs, M. and H. Lange (1996). “Das Problem der Prozeßidentifikation in Waldökosystemen am Beispiel Wassertransport“, IHI-Schriften Zittau, 2 2–222.Google Scholar
  10. 10.
    Hauhs, M., F.-J. Knauft, and H. Lange (2003). “Algorithmic and interactive approaches to stand growth modeling”. in A. Amaro and D. Reed (eds.), Modeling Forest Systems, Wallingford, UK: CABI Publishing, pp. 51–62.Google Scholar
  11. 11.
    Hauhs, M., J. Koch, and H. Lange (2005). “Comparison of time series from ecosystems and an artificial multi-agent network based on complexity measures”, in J.T. Kim (ed.), Systems Biology Workshop at the VIIIth European Conference on Artificial Life (ECAL $2005)$, Canterbury, Kent, UK: University of Kent, 12pp.Google Scholar
  12. 12.
    Ingold, T. (1994). Companion Encyclopedia of Anthropology, London: Routledge.Google Scholar
  13. 13.
    Ingold, T. (2000). The Perception of the Environment – Essays in Livelihood, Dwelling and Skill, London: Routledge.Google Scholar
  14. 14.
    Jakeman, A.J. and G.M. Hornberger (1993). “How much complexity is warranted in a rainfall-runoff model”, Water Resources Research, 29: 2637–2649.CrossRefGoogle Scholar
  15. 15.
    Kimmins, H., C. Welham, B. Seely, M. Meitner, R. Rob, and S. Tom (2005). “Science in forestry: Why does it sometimes disappoint or even fail us?”, IUFRO $205$.Google Scholar
  16. 16.
    Kratz, T.K., L.A. Deegan, M.E. Harmon, and W.K. Lauenroth (2003). “Ecological variability in space and time: Insights gained from the US LTER Program”, Bioscience, 53 (1): 57–67.CrossRefGoogle Scholar
  17. 17.
    Lansing, J.S., J.N. Kremer, and B. Smuts (1998). “System-dependent selection, ecological feedback, and the emergence of functional structure in ecosystems”, Journal of Theoretical Biology, 192: 377–391.CrossRefGoogle Scholar
  18. 18.
    McCann, K.S. (2000). “The diversity-stability debate“, Nature, 405: 228–233.CrossRefGoogle Scholar
  19. 19.
    Minelli, A. (2004). The Development of Animal Form - Ontogeny, Morphology and Evolution, Cambridge, UK: Cambridge University Press.Google Scholar
  20. 20.
    Peters, R.H. (1991). A Critique for Ecology, Cambridge, UK: Cambridge University Press.Google Scholar
  21. 21.
    Pittroff, W. and E.K. Pedersen (2005). Ecological Modeling, Encyclopedia of Life Sciences (http://www.els.net), Chicester, UK: Wiley; doi:10.1038/npg.els.0003270.Google Scholar
  22. 22.
    Rosen, R. (1991). Life Itself – A Comprehensive Inquire into the Nature, Origin, and Fabrication of Life, New York: Columbia University Press.Google Scholar
  23. 23.
    Rubin, D.C. (ed.), (1995). Remembering Our Past – Studies in Autobiograhical Memory, Cambridge, UK: Cambridge University Press.Google Scholar
  24. 24.
    Ruiz-Mirazo, K., J. Peretò, and A. Moreno (2004). “A universal definition of life: Autonomy and open-ended evolution”, Origins of Life and Evolution of the Biosphere, 34: 323–346.CrossRefGoogle Scholar
  25. 25.
    Rutten, J. (2000). “Universal coalgebra: A theory of systems”, Theoretical Computer Science, 249 (1): -80.CrossRefGoogle Scholar
  26. 26.
    hellnhuber, H.J. and Wenzel (eds.). Earth System Analysis, Berlin, Heidelberg, New York: Springer.Google Scholar
  27. 27.
    Schütz, J.-P. (2001). Der Plenterwald und weitere Formen strukturierter und gemischter Wälder, Berlin: Parey Buchverlag.Google Scholar
  28. 28.
    Turi, D. (1996). Functional Operational Semantics and its Denotational Dual, Amsterdam: Free University of Amsterdam.Google Scholar
  29. 29.
    Ulanowicz, R.E. (2004). “On the nature of ecodynamics”, Ecological Complexity, 1 (4): 341–354.CrossRefGoogle Scholar
  30. 30.
    Wegner, P. and D. Goldin (1999). “Interaction as a framework for modeling”, in P. Chen, J. Akoka, H. Kangassalo, and B.Thalheim (eds.), Conceptual Modeling: Current Issues and Future. Lecture Notes in Computer Science 1565, Springer, Heidelberg, pp. 243–257.Google Scholar
  31. 31.
    West, G.B. and J.H. Brown (2004). “Life’s universal scaling laws”, Physics Today, 57 (9): 56.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Michael Hauhs
    • 1
  1. 1.Ecological Modeling University of BayreuthGermany

Personalised recommendations