Dimerization and Oligomerization of Rhodopsin and Other G Protein-Coupled Receptors

  • Sławomir Filipek
  • Anna Modzelewska
  • Krystiana A. KrzyŚko
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 4)


Dimerization, and more generally oligomerization, of G protein-coupled receptors (GPCRs) is experimentally proven and possibly all GPCRs act in oligomeric form. The coupling with G protein, phosphorylation by kinase and binding to arrestin what starts internalization process have also been shown to be influenced by the oligomeric state of the receptors. Cooperative interactions within homo- and heterodimers of GPCRs may be critical for the propagation of an external signal across the cell membrane, activation of a G protein and passing the signal down to effector proteins


Rhodopsin GPCR membrane proteins dimerization oligomerization G protein arrestin signal transduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mirzadegan T, Benko G, Filipek S, Palczewski K (2003) Sequence analyses of G-protein-coupled receptors: similarities to rhodopsin. Biochemistry 42(10):2759–2767PubMedCrossRefGoogle Scholar
  2. 2.
    Bartfai T, Benovic JL, Bockaert J, Bond RA, Bouvier M, Christopoulos A, Civelli O, Devi LA, George SR, Inui A, Kobilka B, Leurs R, Neubig R, Pin JP, Quirion R, Roques BP, Sakmar TP, Seifert R, Stenkamp RE, Strange PG (2004) The state of GPCR research in 2004. Nat. Rev. Drug Discov. 3(7):574–626Google Scholar
  3. 3.
    Takeda S, Kadowaki S, Haga T, Takaesu H, Mitaku S (2002) Identification of G protein-coupled receptor genes from the human genome sequence. FEBS Lett. 520(1–3):97–101PubMedCrossRefGoogle Scholar
  4. 4.
    Ballesteros J, Palczewski K (2001) G protein-coupled receptor drug discovery: Implications from the crystal structure of rhodopsin. Curr. Opin. Drug Discov. Devel. 4:561–574PubMedGoogle Scholar
  5. 5.
    Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2003) Atomic-force microscopy: Rhodopsin dimers in native disc membranes. Nature 421(6919):127–128PubMedCrossRefADSGoogle Scholar
  6. 6.
    Liang Y, Fotiadis D, Filipek S, Saperstein DA, Palczewski K, Engel A (2003) Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. J. Biol. Chem. 278(I 24):21655–21662CrossRefGoogle Scholar
  7. 7.
    Angers S, Salahpour A, Bouvier M (2002) Dimerization: An emerging concept for G protein-coupled receptor ontogeny and function. Annu. Rev. Pharmacol. Toxicol. 42:409–435CrossRefGoogle Scholar
  8. 8.
    Terrillon S, Bouvier M (2004) Roles of G-protein-coupled receptor dimerization – From ontogeny to signalling regulation. EMBO Rep. 5(1):30–34PubMedCrossRefGoogle Scholar
  9. 9.
    Moepps B, Fagni L (2003) Mont Sainte-Odile: A sanctuary for GPCRs. Confidence on signal transduction of G-protein-couple receptors. EMBO Rep. 4(3):237–243PubMedCrossRefGoogle Scholar
  10. 10.
    Bulenger S, Marullo S, Bouvier M (2005) Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol. Sci. 26(3):131–137PubMedCrossRefGoogle Scholar
  11. 11.
    Milligan G (2004) G protein-coupled receptor dimerization: Function and ligand pharmacology. Mol. Pharmacol. 66(1):1–7PubMedCrossRefGoogle Scholar
  12. 12.
    Park PSH, Filipek S, Wells JW, Palczewski K (2004) Oligomerization of G protein-coupled receptors: Past, present, and future. Biochemistry 43(50):15643–15656PubMedCrossRefGoogle Scholar
  13. 13.
    Fredriksson R, Lagerstrom MC, Schioth HB (2005) Expansion of the superfamily of G-protein-coupled receptors in chordates. Ann. N. Y. Acad. Sci. 1040:89–94PubMedCrossRefADSGoogle Scholar
  14. 14.
    Schioth HB, Fredriksson R (2005) The GRAFS classification system of G-protein coupled receptors in comparative perspective. Gen. Comp. Endocrinol. 142(1–2):94–101PubMedCrossRefGoogle Scholar
  15. 15.
    Bjarnadottir TK, Schioth HB, Fredriksson R (2005) The phylogenetic relationship of the glutamate and pheromone G-protein-coupled receptors in different vertebrate species. Ann. N. Y. Acad. Sci. 1040:230–233PubMedCrossRefADSGoogle Scholar
  16. 16.
    Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289(5480):739–745PubMedCrossRefADSGoogle Scholar
  17. 17.
    Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V (2004) The retinal conformation and its environment in rhodopsin in light of a new 2.2 angstrom crystal structure. J. Mol. Biol. 342(2):571–583PubMedCrossRefGoogle Scholar
  18. 18.
    Li J, Edwards PC, Burghammer M, Villa C, Schertler GF (2004) Structure of bovine rhodopsin in a trigonal crystal form. J. Mol. Biol. 343(5):1409–38PubMedCrossRefGoogle Scholar
  19. 19.
    Filipek S, Teller DC, Palczewski K, Stenkamp R (2003) The crystallographic model of rhodopsin and its use in studies of other G protein-coupled receptors. Annu. Rev. Biophys. Biomol. Struct. 32:375–397PubMedCrossRefGoogle Scholar
  20. 20.
    Ridge KD, Abdulaev NG, Sousa M, Palczewski K (2003) Phototransduction: crystal clear. Trends Biochem. Sci. 28(9):479–487PubMedCrossRefGoogle Scholar
  21. 21.
    Ruprecht JJ, Mielke T, Vogel R, Villa C, Schertler GF (2004) Electron crystallography reveals the structure of metarhodopsin I. EMBO J. 23(18):3609–3620PubMedCrossRefGoogle Scholar
  22. 22.
    Filipek S, Stenkamp RE, Teller DC, Palczewski K (2003) G protein-coupled receptor rhodopsin: A prospectus. Annu. Rev. Physiol. 65:851–879PubMedCrossRefGoogle Scholar
  23. 23.
    Baneres JL, Parello J (2003) Structure-based analysis of GPCR function: Evidence for a novel pentameric assembly between the dimeric leukotriene B-4 receptor BLT1 and the G-protein. J. Mol. Biol. 329(4):815–829PubMedCrossRefGoogle Scholar
  24. 24.
    Canals M, Marcellino D, Fanelli F, Ciruela F, de Benedetti P, Goldberg SR, Neve K, Fuxe K, Agnati LF, Woods AS, Ferre S, Lluis C, Bouvier M, Franco R (2003) Adenosine A(2A)-dopamine D2 receptor-receptor heteromerization – Qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J. Biol. Chem. 278(47):46741–46749PubMedCrossRefGoogle Scholar
  25. 25.
    Waldhoer M, Fong J, Jones RM, Lunzer MM, Sharma SK, Kostenis E, Portoghese PS, Whistler JL (2005) A heterodimer-selective agonist shows in vivo relevance of G protein-coupled receptor dimmers. Proc. Natl. Acad. Sci. USA 102(25):9050–9055PubMedCrossRefADSGoogle Scholar
  26. 26.
    Park PSH, Palczewski K (2005) Diversifying the repertoire of G protein-coupled receptors through oligomerization. Proc. Natl. Acad. Sci. USA 102(25):8793–8794PubMedCrossRefADSGoogle Scholar
  27. 27.
    Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2004) The G protein-coupled receptor rhodopsin in the native membrane. FEBS Lett. 564(3):281–288PubMedCrossRefGoogle Scholar
  28. 28.
    Filipek S, Krzysko KA, Fotiadis D, Liang Y, Saperstein DA, Engel A, Palczewski K (2004) A concept for G protein activation by G protein-coupled receptor dimers: the transducin/rhodopsin interface. Photochemical &Photobiological Sciences 3(6):628–638CrossRefGoogle Scholar
  29. 29.
    Gabb HA, Jackson RM, Sternberg MJE (1997) Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Molecular Biology 272(1):106–120CrossRefGoogle Scholar
  30. 30.
    Jackson RM, Gabb HA, Sternberg MJE (1998) Rapid refinement of protein interfaces incorporating solvation: Application to the docking problem. J. Mol. Biol. 276(1):265–285PubMedCrossRefGoogle Scholar
  31. 31.
    Duhovny D, Nussinov R, Wolfson HJ (2002) Efficient unbound docking of rigid molecules, in Algorithms in Bioinformatics, Proceedings. vol. 2452, Springer-Verlag, Berlin, pp 185–200Google Scholar
  32. 32.
    Exner TE, Keil M, Brickmann J (2002) Pattern recognition strategies for molecular surfaces. I. Pattern generation using fuzzy set theory. J. Comput. Chem. 23(12):1176–1187PubMedCrossRefGoogle Scholar
  33. 33.
    Exner TE, Keil M, Brickmann J (2002) Pattern recognition strategies for molecular surfaces. II. Surface complementarity. J. Comput. Chem. 23(12):1188–1197PubMedCrossRefGoogle Scholar
  34. 34.
    Lichtarge O, Bourne HR, Cohen FE (1996) Evolutionarily conserved G (alpha beta gamma) binding surfaces support a model of the G protein-receptor complex. Proc. Natl. Acad. Sci. USA 93(15):7507–7511PubMedCrossRefADSGoogle Scholar
  35. 35.
    Madabushi S, Gross AK, Philippi A, Meng EC, Wensel TG, Lichtarge O (2004) Evolutionary trace of G protein-coupled receptors reveals clusters of residues that determine global and class-specific functions. J. Biol. Chem. 279(9):8126–8132PubMedCrossRefGoogle Scholar
  36. 36.
    Dean MK, Higgs C, Smith RE, Bywater RP, Snell CR, Scott PD, Upton GJG, Howe TJ, Reynolds CA (2001) Dimerization of G-protein-coupled receptors. J. Med. Chem. 44(26):4595–4614PubMedCrossRefGoogle Scholar
  37. 37.
    Nemoto W, Toh H (2005) Prediction of interfaces for oligomerizations of G-protein coupled receptors. Proteins 58(3):644–660PubMedCrossRefGoogle Scholar
  38. 38.
    Fanelli F, De Benedetti PG (2005) Computational Modeling approaches to structure-function analysis of G protein-coupled receptors. Chem. Rev. 105(9):3297–3351PubMedCrossRefGoogle Scholar
  39. 39.
    Herrmann R, Heck M, Henklein P, Kleuss C, Hofmann KP, Ernst OP (2004) Sequence of interactions in receptor-G protein coupling. J. Biol. Chem. 279(23):24283–24290PubMedCrossRefGoogle Scholar
  40. 40.
    Wu PF, Bhamidipati M, Coles M, Rao D (2004) Biological nano-ceramic materials for holographic data storage. Chem. Phys. Lett. 400(4–6):506–510Google Scholar
  41. 41.
    Kothapalli SR, Wu PF, Yelleswarapu CS, Rao D (2004) Medical image processing using transient Fourier holography in bacteriorhodopsin films. Appl. Phys. Lett. 85(24):5836–5838CrossRefADSGoogle Scholar
  42. 42.
    Andruniow T, Ferre N, Olivucci M (2004) Structure, initial excited-state relaxation, and energy storage of rhodopsin resolved at the multiconfigurational perturbation theory level. Proc. Natl. Acad. Sci. USA 101(52):17908–17913PubMedCrossRefADSGoogle Scholar
  43. 43.
    Gascon JA, Batista VS (2004) QM/MM study of energy storage and molecular rearrangements due to the primary event in vision. Biophys. J. 87(5):2931–2941PubMedCrossRefGoogle Scholar
  44. 44.
    Ho D, Chu B, Lee H, Montemagno CD (2004) Protein-driven energy transduction across polymeric biomembranes. Nanotechnology. 15(8):1084–1094CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Sławomir Filipek
    • 1
  • Anna Modzelewska
    • 1
  • Krystiana A. KrzyŚko
    • 1
  1. 1.International Institute of Molecular and Cell BiologyWarsawPoland

Personalised recommendations