ARTIN-SCHREIER EXTENSIONS AND THEIR APPLICATIONS

  • Cem Güneri
  • Ferruh Özbudak
Part of the Algebra and Applications book series (AA, volume 6)

Abstract

A Galois extension E/F of fields is called a cyclic extension if the Galois group is cyclic. Assume that p > 0 is the characteristic of our fields and n is the degree of the field extension E/F. If n is relatively prime to p, and there is a primitive n th root of unity in F, then E/F is a Kummer extension, i.e. E = F(y) with y nF. If n = p, then E/F is an Artin-Schreier extension, i.e. E = F(y) with y p yF. Finally, if n = p a for a > 1, then the extension E/F can be described in terms of Witt vectors. For these facts, see [34, Section VI.7].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Abdon and F. Torres, “On maximal curves in characteristic two”, Manuscripta Math., Vol. 99, 39–53 (1999).MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    P. Charpin, “Open problems on cyclic codes”, Handbook of Coding Theory, North-Holland, 963–1063 (1998).Google Scholar
  3. [3]
    E. Çakçak and F. Özbudak, “Subfields of the function field of the Deligne-Luszting curve of Ree type”, Acta Arith., Vol. 115, 133–180 (2004).MATHMathSciNetGoogle Scholar
  4. [4]
    P. Deligne, “Applications de la formule des traces aux sommes trigonométriques”, SGA 4 1/2 Cohomologie Etale, Lecture Notes in Mathematics, Vol. 569, 168–232 (1978).Google Scholar
  5. [5]
    P. Delsarte, “On Subfield Subcodes of Reed-Solomon Codes”, IEEE Trans. Inform. Theory, Vol. 21, 575–576 (1975).MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    I. Duursma, H. Stichtenoth and C. Voss, “Generalized Hamming weights for duals of BCH codes and maximal algebraic function fields”, Arithmetic, geometry and coding theory (Luminy, 1993) , 53–65 (1996).Google Scholar
  7. [7]
    G. Frey, M. Perret and H. Stichtenoth, “On the different of abelian extensions of global fields”, Coding Theory and Algebraic Geometry (Luminy 1991) , Lecture Notes in Mathematics, Vol. 1518, 26–32 (1992).MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    R. Fuhrman, A. Garcia and F. Torres, “On maximal curves”, J. Number Theory, Vol. 67, 29–51 (1997).MathSciNetCrossRefGoogle Scholar
  9. [9]
    R. Fuhrman and F. Torres, “The genus of curves over finite fields with many rational points”, Manuscripta Math., Vol. 89, 103–106 (1996).MathSciNetGoogle Scholar
  10. [10]
    A. Garcia, “Curves over finite fields attaining the Hasse-Weil upper bound”, European Congress of Mathematics, Vol. II (Barcelona, 2000) , Progr. Math., Vol. 202, 199–205 (2001).MATHGoogle Scholar
  11. [11]
    A. Garcia and H. Stichtenoth, “Elementary abelian p-extensions of algebraic function fields”, Manuscripta Math., Vol. 72, 67–79 (1991).MATHMathSciNetGoogle Scholar
  12. [12]
    A. Garcia, H. Stichtenoth and C. P. Xing, “On subfields of the Hermitian function field”, Compositio Math., Vol. 120, 137–170 (2000).MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    G. van der Geer and M. van der Vlugt, Tables of curves with many points, available at http://www.science.uva.nl/~geer/tables-mathcomp15.ps.Google Scholar
  14. [14]
    G. van der Geer and M. van der Vlugt, “Artin-Schreier curves and codes”, J. Algebra, Vol. 139, 256–272 (1991).MATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    G. van der Geer and M. van der Vlugt, “Generalized Hamming weights of Melas codes and dual Melas codes”, SIAM J. Discrete Math., Vol. 7, 554–559 (1994).MATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    G. van der Geer and M. van der Vlugt, “Fibre products of Artin-Schreier curves and generalized Hamming weights of codes”, J. Combin. Theory Ser. A, Vol. 70, 337–348 (1995).MATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    G. van der Geer and M. van der Vlugt, “The second generalized Hamming weight of the dual codes of double-error correcting binary BCH codes”, Bull. London Math. Soc., Vol. 27, 82–86 (1995).MATHMathSciNetGoogle Scholar
  18. [18]
    G. van der Geer and M. van der Vlugt, “Generalized Hamming weights of codes and curves over finite fields with many points”, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993) , Israel Math. Conf. Proc., Vol. 9, 417–432 (1996).MATHGoogle Scholar
  19. [19]
    G. van der Geer and M. van der Vlugt, “Quadratic forms, generalized Hamming weights of codes and curves with many points”, J. Number Theory, Vol. 59, 20–36 (1996).MATHMathSciNetCrossRefGoogle Scholar
  20. [20]
    G. van der Geer and M. van der Vlugt, “Generalized Reed-Muller codes and curves with many points”, J. Number Theory, Vol. 72, 257–268 (1998).MATHMathSciNetCrossRefGoogle Scholar
  21. [21]
    G. van der Geer, R. Schoof and M. van der Vlugt, “Weight formulas for ternary Melas codes”, Math. Comp., Vol. 58, 781–792 (1992).MATHMathSciNetCrossRefGoogle Scholar
  22. [22]
    M. Giulietti, G. Korchmaros and F. Torres, “Quotient curves of the Deligne-Lusztig curve of Suzuki type”, available at arXiv:math.AG/0206311, preprint, 2002.Google Scholar
  23. [23]
    V.D. Goppa, “Codes on algebraic curves”, Soviet Math. Dokl., Vol. 24, 170–172 (1981).MATHGoogle Scholar
  24. [24]
    C. Güneri, “Artin-Schreier curves and weights of two-dimensional cyclic codes”, Finite Fields Appl., Vol. 10, 481–505 (2004).MATHMathSciNetCrossRefGoogle Scholar
  25. [25]
    C.Güneri and F. Özbudak, “Improvements on generalized Hamming weights of some trace codes”, Des. Codes Cryptogr, Vol. 39, 215–231 (2006).MATHMathSciNetCrossRefGoogle Scholar
  26. [26]
    C. Güneri and F. Özbudak, “Multidimensional cyclic codes and Artin-Schreier hypersurfaces”, preprint, 2006.Google Scholar
  27. [27]
    C.Güneri and F. Özbudak, “Cyclic codes and reducible additive equations”, preprint, 2006.Google Scholar
  28. [28]
    J. P. Hansen and J. P. Pedersen, “Automorphism groups of Ree type, Deligne-Lusztig curves and function fields”, J. Reine Angew. Math., Vol. 440, 99–109 (1993).MATHMathSciNetGoogle Scholar
  29. [29]
    H. Hasse, “Theorie der relativ zyklischen algebraischen Funktionenkörper”, J. Reine Angew. Math., Vol. 172, 37–54 (1934).MATHGoogle Scholar
  30. [30]
    T. Helleseth, T. Kløve and Ø. Ytrehus “Generalized Hamming weights of linear codes”, IEEE Trans. Inform. Theory, Vol. 38, 1133–1140 (1992).MATHMathSciNetCrossRefGoogle Scholar
  31. [31]
    Y. Ihara, “Some remarks on the number of rational points of algebraic curves over finite fields”, J. Fac. Sci. Tokio, Vol. 28, 721–724 (1981).MATHMathSciNetGoogle Scholar
  32. [32]
    T. Kløve, “Support weight distribution of linear codes”, Discrete Math., Vol. 106/107, 311–316 (1992).CrossRefGoogle Scholar
  33. [33]
    G. Lachaud, “Sommes d’Eisenstein et nombre de points de certaines courbes algébriques sur les corps finis”, C.R. Acad. Sci. Paris, Vol. 305, 729–732 (1987).MATHMathSciNetGoogle Scholar
  34. [34]
    S. Lang, Algebra, Addison-Wesley, 3rd ed., 1999.Google Scholar
  35. [35]
    R. Lidl and H. Niederreieter, Finite Fields, Cambridge University Press, Cambridge, 1997.Google Scholar
  36. [36]
    J.H. van Lint, Introduction to Coding Theory, Springer-Verlag, 1999.Google Scholar
  37. [37]
    G. McGuire and J.F. Voloch, “Weights in codes and genus 2 curves”, Proc. Amer. Math. Soc., Vol. 133, 2429–2437 (2005).MATHMathSciNetCrossRefGoogle Scholar
  38. [38]
    O. Moreno and P.V. Kumar, “Minimum distance bounds for cyclic codes and Deligne’s theorem”, IEEE Trans. Inform. Theory, Vol. 39, 1524–1534 (1993).MATHMathSciNetCrossRefGoogle Scholar
  39. [39]
    O. Moreno, J.P. Pedersen and D. Polemi, “An improved Serre bound for elementary abelian extensions of Fq(x) and the generalized Hamming weights of duals of BCH codes”, IEEE Trans. Inform. Theory, Vol. 44, 1291–1293 (1998).MATHMathSciNetCrossRefGoogle Scholar
  40. [40]
    F.J. MacWilliams and N.J.A. Sloane, The theory of error-correcting codes, North-Holland, 10th Ed., 1998.Google Scholar
  41. [41]
    H. Niederreiter and C. Xing, Rational Points on Curves over Finite Fields, Cambridge University Press, Cambridge, 2001.MATHGoogle Scholar
  42. [42]
    J. P. Pedersen, “A function field related to the Ree group”, Coding Theory and Algebraic Geometry (Luminy 1991) , Lecture Notes in Mathematics, Vol. 1518, 122–131 (1992).MATHGoogle Scholar
  43. [43]
    V. Pless, Introduction to the Theory of Error-Correcting Codes, Wiley, 1998.Google Scholar
  44. [44]
    H. G. Rück and H. Stichtenoth, “A characterization of Hermitian function fields over finite fields”, J. Reine Angew. Math., Vol. 457, 185–188 (1994).MATHMathSciNetGoogle Scholar
  45. [45]
    R. Schoof, “Nonsingular plane cubic curves over finite fields”, J. Combin. Theory Ser. A, Vol. 46, 183–211 (1987).MATHMathSciNetCrossRefGoogle Scholar
  46. [46]
    R. Schoof, “Families of curves and weight distributions of codes”, Bull. Amer. Math. Soc., Vol. 32, 171–183 (1995).MATHMathSciNetGoogle Scholar
  47. [47]
    R. Schoof and M. van der Vlugt, “Hecke operators and the weight distributions of certain codes”, J. Combin. Theory Ser. A, Vol. 57, 163–186 (1991).MATHMathSciNetCrossRefGoogle Scholar
  48. [48]
    J. Simonis, “The effective length of subcodes”, Appl. Algebra Engrg. Comm. Comput., Vol. 5, 371–377 (1994).MATHMathSciNetCrossRefGoogle Scholar
  49. [49]
    H. Stichtenoth “On the dimension of subfield subcodes”, IEEE Trans. Inform. Theory, Vol. 36, 90–93 (1990).MATHMathSciNetCrossRefGoogle Scholar
  50. [50]
    H. Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag, Berlin, 1993.MATHGoogle Scholar
  51. [51]
    H. Stichtenoth and C. Voss, “Generalized Hamming weights of trace codes”, IEEE Trans. Infrom. Theory, Vol. 40, 554–558 (1994).MATHMathSciNetCrossRefGoogle Scholar
  52. [52]
    H. Stichtenoth and C. P. Xing, “The genus of maximal function fields over finite fields”, Manuscripta Math., Vol. 86, 217–224 (1995).MATHMathSciNetGoogle Scholar
  53. [53]
    K-O. Stöhr and J.F.Voloch,“Weierstrass points and curves over finite fields”, Proc. London Math. Soc., Vol. 52, 1–19 (1986).MATHMathSciNetGoogle Scholar
  54. [54]
    M. A. Tsfasman and S. G. Vladut, Algebraic-Geometric Codes, Kluwer, Dordrecht, 1991.MATHGoogle Scholar
  55. [55]
    M. A. Tsfasman and S. G. Vladut, “Geometric approach to higher weights”, IEEE Trans. Inform. Theory, Vol. 41, 1564–1588 (1995).MATHMathSciNetCrossRefGoogle Scholar
  56. [56]
    M. van der Vlugt, “The true dimension of certain binary Goppa codes”, IEEE Trans. Inform. Theory, Vol. 36, 397–398 (1990).MATHMathSciNetCrossRefGoogle Scholar
  57. [57]
    M. van der Vlugt, “On the dimension of trace codes”, IEEE Trans. Inform. Theory, Vol. 37, 196–199 (1991).MATHMathSciNetCrossRefGoogle Scholar
  58. [58]
    M. van der Vlugt, “A new upper bound for the dimension of trace codes”, Bull. London Math. Soc., Vol. 23, 395–400 (1991).MATHMathSciNetGoogle Scholar
  59. [59]
    J.F. Voloch, “On the duals of binary BCH codes”, IEEE Trans. Inform. Theory, Vol. 47, 2050–2051 (2001).MATHMathSciNetCrossRefGoogle Scholar
  60. [60]
    V.K.Wei, “Generalized Hamming weights for linear codes”, IEEE Trans. Inform. Theory, Vol. 37, 1412–1418 (1991).MATHMathSciNetCrossRefGoogle Scholar
  61. [61]
    J. Wolfmann, “New bounds on cyclic codes from algebraic curves”, Lecture Notes in Computer Science, Vol. 388, 47–62 (1989).MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Cem Güneri
  • Ferruh Özbudak

There are no affiliations available

Personalised recommendations