# ARTIN-SCHREIER EXTENSIONS AND THEIR APPLICATIONS

• Cem Güneri
• Ferruh Özbudak
Chapter
Part of the Algebra and Applications book series (AA, volume 6)

## Abstract

A Galois extension E/F of fields is called a cyclic extension if the Galois group is cyclic. Assume that p > 0 is the characteristic of our fields and n is the degree of the field extension E/F. If n is relatively prime to p, and there is a primitive n th root of unity in F, then E/F is a Kummer extension, i.e. E = F(y) with y nF. If n = p, then E/F is an Artin-Schreier extension, i.e. E = F(y) with y p yF. Finally, if n = p a for a > 1, then the extension E/F can be described in terms of Witt vectors. For these facts, see [34, Section VI.7].

## Preview

### References

1. [1]
M. Abdon and F. Torres, “On maximal curves in characteristic two”, Manuscripta Math., Vol. 99, 39–53 (1999).
2. [2]
P. Charpin, “Open problems on cyclic codes”, Handbook of Coding Theory, North-Holland, 963–1063 (1998).Google Scholar
3. [3]
E. Çakçak and F. Özbudak, “Subfields of the function field of the Deligne-Luszting curve of Ree type”, Acta Arith., Vol. 115, 133–180 (2004).
4. [4]
P. Deligne, “Applications de la formule des traces aux sommes trigonométriques”, SGA 4 1/2 Cohomologie Etale, Lecture Notes in Mathematics, Vol. 569, 168–232 (1978).Google Scholar
5. [5]
P. Delsarte, “On Subfield Subcodes of Reed-Solomon Codes”, IEEE Trans. Inform. Theory, Vol. 21, 575–576 (1975).
6. [6]
I. Duursma, H. Stichtenoth and C. Voss, “Generalized Hamming weights for duals of BCH codes and maximal algebraic function fields”, Arithmetic, geometry and coding theory (Luminy, 1993) , 53–65 (1996).Google Scholar
7. [7]
G. Frey, M. Perret and H. Stichtenoth, “On the different of abelian extensions of global fields”, Coding Theory and Algebraic Geometry (Luminy 1991) , Lecture Notes in Mathematics, Vol. 1518, 26–32 (1992).
8. [8]
R. Fuhrman, A. Garcia and F. Torres, “On maximal curves”, J. Number Theory, Vol. 67, 29–51 (1997).
9. [9]
R. Fuhrman and F. Torres, “The genus of curves over finite fields with many rational points”, Manuscripta Math., Vol. 89, 103–106 (1996).
10. [10]
A. Garcia, “Curves over finite fields attaining the Hasse-Weil upper bound”, European Congress of Mathematics, Vol. II (Barcelona, 2000) , Progr. Math., Vol. 202, 199–205 (2001).
11. [11]
A. Garcia and H. Stichtenoth, “Elementary abelian p-extensions of algebraic function fields”, Manuscripta Math., Vol. 72, 67–79 (1991).
12. [12]
A. Garcia, H. Stichtenoth and C. P. Xing, “On subfields of the Hermitian function field”, Compositio Math., Vol. 120, 137–170 (2000).
13. [13]
G. van der Geer and M. van der Vlugt, Tables of curves with many points, available at http://www.science.uva.nl/~geer/tables-mathcomp15.ps.Google Scholar
14. [14]
G. van der Geer and M. van der Vlugt, “Artin-Schreier curves and codes”, J. Algebra, Vol. 139, 256–272 (1991).
15. [15]
G. van der Geer and M. van der Vlugt, “Generalized Hamming weights of Melas codes and dual Melas codes”, SIAM J. Discrete Math., Vol. 7, 554–559 (1994).
16. [16]
G. van der Geer and M. van der Vlugt, “Fibre products of Artin-Schreier curves and generalized Hamming weights of codes”, J. Combin. Theory Ser. A, Vol. 70, 337–348 (1995).
17. [17]
G. van der Geer and M. van der Vlugt, “The second generalized Hamming weight of the dual codes of double-error correcting binary BCH codes”, Bull. London Math. Soc., Vol. 27, 82–86 (1995).
18. [18]
G. van der Geer and M. van der Vlugt, “Generalized Hamming weights of codes and curves over finite fields with many points”, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993) , Israel Math. Conf. Proc., Vol. 9, 417–432 (1996).
19. [19]
G. van der Geer and M. van der Vlugt, “Quadratic forms, generalized Hamming weights of codes and curves with many points”, J. Number Theory, Vol. 59, 20–36 (1996).
20. [20]
G. van der Geer and M. van der Vlugt, “Generalized Reed-Muller codes and curves with many points”, J. Number Theory, Vol. 72, 257–268 (1998).
21. [21]
G. van der Geer, R. Schoof and M. van der Vlugt, “Weight formulas for ternary Melas codes”, Math. Comp., Vol. 58, 781–792 (1992).
22. [22]
M. Giulietti, G. Korchmaros and F. Torres, “Quotient curves of the Deligne-Lusztig curve of Suzuki type”, available at arXiv:math.AG/0206311, preprint, 2002.Google Scholar
23. [23]
V.D. Goppa, “Codes on algebraic curves”, Soviet Math. Dokl., Vol. 24, 170–172 (1981).
24. [24]
C. Güneri, “Artin-Schreier curves and weights of two-dimensional cyclic codes”, Finite Fields Appl., Vol. 10, 481–505 (2004).
25. [25]
C.Güneri and F. Özbudak, “Improvements on generalized Hamming weights of some trace codes”, Des. Codes Cryptogr, Vol. 39, 215–231 (2006).
26. [26]
C. Güneri and F. Özbudak, “Multidimensional cyclic codes and Artin-Schreier hypersurfaces”, preprint, 2006.Google Scholar
27. [27]
C.Güneri and F. Özbudak, “Cyclic codes and reducible additive equations”, preprint, 2006.Google Scholar
28. [28]
J. P. Hansen and J. P. Pedersen, “Automorphism groups of Ree type, Deligne-Lusztig curves and function fields”, J. Reine Angew. Math., Vol. 440, 99–109 (1993).
29. [29]
H. Hasse, “Theorie der relativ zyklischen algebraischen Funktionenkörper”, J. Reine Angew. Math., Vol. 172, 37–54 (1934).
30. [30]
T. Helleseth, T. Kløve and Ø. Ytrehus “Generalized Hamming weights of linear codes”, IEEE Trans. Inform. Theory, Vol. 38, 1133–1140 (1992).
31. [31]
Y. Ihara, “Some remarks on the number of rational points of algebraic curves over finite fields”, J. Fac. Sci. Tokio, Vol. 28, 721–724 (1981).
32. [32]
T. Kløve, “Support weight distribution of linear codes”, Discrete Math., Vol. 106/107, 311–316 (1992).
33. [33]
G. Lachaud, “Sommes d’Eisenstein et nombre de points de certaines courbes algébriques sur les corps finis”, C.R. Acad. Sci. Paris, Vol. 305, 729–732 (1987).
34. [34]
35. [35]
R. Lidl and H. Niederreieter, Finite Fields, Cambridge University Press, Cambridge, 1997.Google Scholar
36. [36]
J.H. van Lint, Introduction to Coding Theory, Springer-Verlag, 1999.Google Scholar
37. [37]
G. McGuire and J.F. Voloch, “Weights in codes and genus 2 curves”, Proc. Amer. Math. Soc., Vol. 133, 2429–2437 (2005).
38. [38]
O. Moreno and P.V. Kumar, “Minimum distance bounds for cyclic codes and Deligne’s theorem”, IEEE Trans. Inform. Theory, Vol. 39, 1524–1534 (1993).
39. [39]
O. Moreno, J.P. Pedersen and D. Polemi, “An improved Serre bound for elementary abelian extensions of Fq(x) and the generalized Hamming weights of duals of BCH codes”, IEEE Trans. Inform. Theory, Vol. 44, 1291–1293 (1998).
40. [40]
F.J. MacWilliams and N.J.A. Sloane, The theory of error-correcting codes, North-Holland, 10th Ed., 1998.Google Scholar
41. [41]
H. Niederreiter and C. Xing, Rational Points on Curves over Finite Fields, Cambridge University Press, Cambridge, 2001.
42. [42]
J. P. Pedersen, “A function field related to the Ree group”, Coding Theory and Algebraic Geometry (Luminy 1991) , Lecture Notes in Mathematics, Vol. 1518, 122–131 (1992).
43. [43]
V. Pless, Introduction to the Theory of Error-Correcting Codes, Wiley, 1998.Google Scholar
44. [44]
H. G. Rück and H. Stichtenoth, “A characterization of Hermitian function fields over finite fields”, J. Reine Angew. Math., Vol. 457, 185–188 (1994).
45. [45]
R. Schoof, “Nonsingular plane cubic curves over finite fields”, J. Combin. Theory Ser. A, Vol. 46, 183–211 (1987).
46. [46]
R. Schoof, “Families of curves and weight distributions of codes”, Bull. Amer. Math. Soc., Vol. 32, 171–183 (1995).
47. [47]
R. Schoof and M. van der Vlugt, “Hecke operators and the weight distributions of certain codes”, J. Combin. Theory Ser. A, Vol. 57, 163–186 (1991).
48. [48]
J. Simonis, “The effective length of subcodes”, Appl. Algebra Engrg. Comm. Comput., Vol. 5, 371–377 (1994).
49. [49]
H. Stichtenoth “On the dimension of subfield subcodes”, IEEE Trans. Inform. Theory, Vol. 36, 90–93 (1990).
50. [50]
H. Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag, Berlin, 1993.
51. [51]
H. Stichtenoth and C. Voss, “Generalized Hamming weights of trace codes”, IEEE Trans. Infrom. Theory, Vol. 40, 554–558 (1994).
52. [52]
H. Stichtenoth and C. P. Xing, “The genus of maximal function fields over finite fields”, Manuscripta Math., Vol. 86, 217–224 (1995).
53. [53]
K-O. Stöhr and J.F.Voloch,“Weierstrass points and curves over finite fields”, Proc. London Math. Soc., Vol. 52, 1–19 (1986).
54. [54]
M. A. Tsfasman and S. G. Vladut, Algebraic-Geometric Codes, Kluwer, Dordrecht, 1991.
55. [55]
M. A. Tsfasman and S. G. Vladut, “Geometric approach to higher weights”, IEEE Trans. Inform. Theory, Vol. 41, 1564–1588 (1995).
56. [56]
M. van der Vlugt, “The true dimension of certain binary Goppa codes”, IEEE Trans. Inform. Theory, Vol. 36, 397–398 (1990).
57. [57]
M. van der Vlugt, “On the dimension of trace codes”, IEEE Trans. Inform. Theory, Vol. 37, 196–199 (1991).
58. [58]
M. van der Vlugt, “A new upper bound for the dimension of trace codes”, Bull. London Math. Soc., Vol. 23, 395–400 (1991).
59. [59]
J.F. Voloch, “On the duals of binary BCH codes”, IEEE Trans. Inform. Theory, Vol. 47, 2050–2051 (2001).
60. [60]
V.K.Wei, “Generalized Hamming weights for linear codes”, IEEE Trans. Inform. Theory, Vol. 37, 1412–1418 (1991).
61. [61]
J. Wolfmann, “New bounds on cyclic codes from algebraic curves”, Lecture Notes in Computer Science, Vol. 388, 47–62 (1989).

## Authors and Affiliations

• Cem Güneri
• Ferruh Özbudak

There are no affiliations available