Colonisation Processes

  • K. A. Hughes
  • S. Ott
  • M. Bölter
  • P. Convey

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, R. J., Convey, P., Hughes, K. A., and Wynn-Williams, D. D. (2003) Seasonal periodicity of physical factors, inorganic nutrients and microalgae in Antarctic fellfields, Polar Biology 26, 396-403.Google Scholar
  2. Bailey, R.H. and James, P. W. (1979) Birds and the dispersal of lichen propagules, Lichenologist 11, 105.Google Scholar
  3. Barber, H.N., Dadswell, H.E. and Ingle, H.D. (1959) Transport of driftwood from South America to Tasmania and Macquarie Island. Nature 184, 203-204.Google Scholar
  4. Bargagli, R., Broady, P.A. and Walton, D.W.H. (1996) Preliminary investigation of the thermal biosystem of Mount Rittmann fumaroles (northern Victoria Land, Antarctica), Antarctic Science 8, 121-126.Google Scholar
  5. Barnes, D.K.A. (2002) Invasions by marine life on plastic debris, Nature 416, 808-809.PubMedGoogle Scholar
  6. Barnes, D.K.A. and Fraser, K.P.P. (2003) Rafting by five phyla on man-made flotsam in the Southern Ocean, Marine Ecology Progress Series 262, 289-291.Google Scholar
  7. Barnes, D.K.A., Hodgson, D.A., Convey, P., Allen, C. and Clarke, A. (2006) Incursion and excursion of Antarctic biota: past, present and future, Global Ecology and Biogeography 15, 121-142.Google Scholar
  8. Barnes, D.K.A., Warren, N., Webb, K., Phalan, B. and Reid, K. (2004) Polar pedunculate barnacles piggy-back on pycnogona, penguins, pinniped seals and plastics, Marine Ecology Progress Series, 284, 305-310.Google Scholar
  9. Benninghoff, W.S. and Benninghoff, A.S. (1985) Wind transport of electrostatically charged particles and minute organisms in Antarctica. In W.R. Siegfried, P.R. Condy and R.M. Laws (eds.) Antarctic nutrient cycles and food webs, Springer-Verlag, Berlin Germany, pp 592-596.Google Scholar
  10. Bergstrom, D.M. and Chown, S.L. (1999) Life at the front: history, ecology and change on southern ocean islands, Trends in Ecology and Evolution 14, 472-477.Google Scholar
  11. Bergstrom, D.M., Hodgson, D.A. and Convey, P. (2006) The physical setting of the Antarctic, in D.M. Bergstrom, P. Convey, and A.H.L. Huiskes (eds.), Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, Springer, Dordrecht (this volume).Google Scholar
  12. Block, W. (1984) Terrestrial Microbiology, Invertebrates and Ecosystems, in R.M. Laws (ed.), Antarctic Ecology Volume 1. Academic Press, London, pp. 163-236.Google Scholar
  13. Block, W. (1990) Cold tolerance of insects and other arthropods, Philosophical Transactions of the Royal Society of London Series B 326, 613-633.Google Scholar
  14. Block, W. (1996) Cold or drought – the lesser of two evils for terrestrial arthropods? European Journal of Entomology 93, 325-339.Google Scholar
  15. Bölter, M. (1990) Microbial ecology of soils from Wilkes Land, Antarctica. II. Patterns of microbial activity and related organic and inorganic matter, Proceedings of the NIPR Symposia on Polar Biology 3, 120-132.Google Scholar
  16. Bölter, M. (1992) Environmental conditions and microbiological properties from soils and lichens from Antarctica (Casey Station, Wilkes Land), Polar Biology 11, 591-599.Google Scholar
  17. Bölter, M. (2004a) Soil: an extreme habitat for microorganisms? Pedosphere 14, 137-144.Google Scholar
  18. Bölter, M. (2004b)Ecophysiology of psychrophilic and psychrotolerant microorganisms. In S. Shivaji (ed.) Microbes from cold habitats: biodiversity, biotechnology and cold adaptation. Cellular and Molecular Biology Special Issue 50, 563-573.Google Scholar
  19. Bölter, M. and Stonehouse, B. (2002) Uses, preservation, and protection of Antarctic coastal regions. In: Beyer, L. and Bölter, M. (eds.) Geoecology of Antarctic ice-free coastal landscapes. Springer-Verlag, Berlin, Germany, Ecological Studies 154, 393-407.Google Scholar
  20. Bölter, M., Beyer, L. and Stonehouse, B. (2002) Antarctic coastal landscapes: characteristics, ecology and research. In L. Beyer and M. Bölter (eds) Geoecology of Antarctic ice-free coastal landscapes. Springer-Verlag, Berlin, Germany, Ecological Studies 154, 5-22.Google Scholar
  21. Bowman, J.P., Rea, S.M., Brown, M.V., McCammon, S.A., Smith, M.C. and McMeekin, T.A. (1999) Community structure and psychrophily in Antarctic microbial ecosystems. In C.R. Bell, M. Brylinsky and P. Johnson-Green (eds.) Microbial biosystems: new frontiers. Proceedings of the 8th International Symposium on Microbial Ecology, Atlantic Canada Society for Microbial Ecology, Halifax, Canada.Google Scholar
  22. Burger, A.E., Williams, A.J. and Sinclair, J.C. (1980) Vagrants and the paucity of land bird species at the Prince Edward Islands, Journal of Biogeography 7, 305-310.Google Scholar
  23. Chevrier, M., Vernon, P. and Frenot, Y. (1997) Potential effects of two alien insects on a subantarctic wingless fly in the Kerguelen Islands. In B. Battaglia, J. Valencia and D.W.H. Walton (eds.), Antarctic Communities: Species, Structure and Survival, Cambridge University Press, Cambridge, pp. 424-431.Google Scholar
  24. Clarke, A. (2003) Evolution, adaptation and diversity: global ecology in an Antarctic context. In: A.H.L. Huiskes, W.W.C. Gieskes, J. Rozema, R.M.L. Schorno, S.M. van der Vries and W.J. Wolff (eds.), Antarctic Biology in a Global Context, Backhuys Publishers, Leiden, The Netherlands, pp. 3-17.Google Scholar
  25. Clarke, A., Barnes, D.K.A. and Hodgson, D.A. (2005) How isolated is Antarctica? Trends in Ecology and Evolution 20, 1-3.PubMedGoogle Scholar
  26. Cockell, C.S. and Knowland, J. (1999) Ultraviolet radiation screening compounds, Biological Reviews 74, 311-345.PubMedGoogle Scholar
  27. Cockell, C.S., Rettberg, P., Horneck, G., Wynn-Williams, D.D., Scherer, K. and Gugg-Helminger, A. (2002) Influence of ice and snow covers on the UV exposure of terrestrial microbial communities: dosimetric studies, Journal of Photochemistry and Photobiology B: Biology 68, 23-32.Google Scholar
  28. Cockell, C.S. and Stokes, M.D. (2004) Widespread colonization by polar hypoliths, Nature 431, 414.PubMedGoogle Scholar
  29. Convey, P. (1996a) The influence of environmental characteristics on life history attributes of Antarctic terrestrial biota, Biological Reviews 71, 191-225.Google Scholar
  30. Convey, P. (1996b) Overwintering strategies of terrestrial invertebrates from Antarctica - the significance of flexibility in extremely seasonal environments, European Journal of Entomology 93, 489-505.Google Scholar
  31. Convey, P. (1997) Environmental change: possible consequences for the life histories of Antarctic terrestrial biota, Korean Journal of Polar Research 8, 127-144.Google Scholar
  32. Convey, P. (2001a) Antarctic Ecosystems. In S. Levin (ed.), Encyclopaedia of Biodiversity, vol 1., Academic Press, San Diego, USA, pp. 171-184.Google Scholar
  33. Convey, P. (2001b) Terrestrial ecosystem response to climate changes in the Antarctic. In G.-R. Walther, C.A. Burga and P.J. Edwards (eds.), “Fingerprints” of climate change - adapted behaviour and shifting species ranges, Kluwer, New York, pp 17-42.Google Scholar
  34. Convey, P. (2003) Maritime Antarctic climate change: signals from terrestrial biology. In E. Domack, A. Burnett, A. Leventer, P. Convey, M. Kirby and R. Bindschadler (eds.), Antarctic Peninsula Climate Variability: Historical and Palaeoenvironmental Perspectives, Antarctic Research Series, Vol. 79, American Geophysical Union, Washington, D.C., pp. 145-158.Google Scholar
  35. Convey, P. (2005) Recent lepidopteran records from sub-Antarctic South Georgia, Polar Biology 28, 108-110.Google Scholar
  36. Convey, P. (2006) Antarctic climate change and its influences on terrestrial ecosystems, in D.M. Bergstrom, P. Convey, and A.H.L. Huiskes (eds.), Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator. Springer, Dordrecht (this volume).Google Scholar
  37. Convey, P. and McInnes, S.J. (2005) Exceptional, tardigrade dominated, ecosystems from Ellsworth Land, Antarctica, Ecology 86, 519-527.Google Scholar
  38. Convey, P. and Smith, R.I.L. (1993) Investment in sexual reproduction by Antarctic mosses, Oikos 68, 293-302.Google Scholar
  39. Convey, P., Barnes, D.K.A. and Morton, A. (2002a) Artefact accumulation on Antarctic oceanic island shores, Polar Biology 25, 612-617.Google Scholar
  40. Convey, P., Block, W. and Peat, H.J. (2003) Soil arthropods as indicators of water stress in Antarctic terrestrial habitats? Global Change Biology 9, 1718-1730.Google Scholar
  41. Convey, P., Smith, R.I.L., Hodgson, D.A. and Peat, H.J. (2000) The flora of the South Sandwich Islands, with particular reference to the influence of geothermal heating, Journal of Biogeography 27, 1279-1295.Google Scholar
  42. Convey, P., Pugh, P. J. A., Jackson, C., Murray, A. W., Ruhland, C. T., Xiong, F. S. and Day, T. A. (2002b) Response of Antarctic terrestrial arthropods to multifactorial climate manipulation over a four year period. Ecology 83, 3130-3140.Google Scholar
  43. Copson, G. and Whinam, J. (2001) Review of ecological restoration programme on subantarctic Macquarie Island: pest management progress and future directions, Ecological Management and Restoration 2, 129-138.Google Scholar
  44. Corner, R.W.M. and Smith, R.I.L. (1973) Botanical evidence of ice recession in the Argentine Islands, British Antarctic Survey Bulletin 35, 83-86.Google Scholar
  45. Coulson, S.J., Hodkinson, I.D., Webb, N.R. and Harrison, J.A. (2002) Survival of terrestrial soil-dwelling arthropods on and in seawater: implications for trans-oceanic dispersal, Functional Ecology 16, 353-356.Google Scholar
  46. Davey, M.C., Davidson, H.P.B., Richard, K.J. and Wynn-Williams, D.D. (1991) Attachment and growth of Antarctic soil cyanobacteria and algae on natural and artificial substrata, Soil Biology and Biochemistry 23, 185-191.Google Scholar
  47. Davey, M.C. and Rothery, P. (1993) Primary colonization by microalgae in relation to spatial variation in edaphic factors on antarctic fellfield soils, Journal of Ecology 8, 335-343.Google Scholar
  48. Day, T.A., Ruhland, C.T., Grobe, C.W. and Xiong, F. (1999) Growth and reproduction of Antarctic vascular plants in response to warming and UV radiation reductions in the field, Oecologia 119, 24-35.Google Scholar
  49. Demars, B.G. and Boerner, R.E.J. (1995) Mycorrhizal status of Deschampsia antarctica in the Palmer Station area, Antarctica, Mycologia 87, 451-453.Google Scholar
  50. During, H.J. (1979) Life strategies of bryophytes: a preliminary review, Lindbergia 5, 2-18.Google Scholar
  51. Edwards, H.G.M., Garcia-Pichel, F., Newton, E.M. and Wynn-Williams, D.D. (2000) Vibrational Raman spectroscopic study of scytonemin, the UV-protective cyanobacterial pigment, Spectrochimica Acta Part A - Molecular and Biomolecular Spectroscopy 56, 193-200.Google Scholar
  52. Ellis-Evans, J.C. and Walton, D. (1990) The process of colonization in Antarctic terrestrial and freshwater ecosystems, Proceedings of the NIPR Symposium on Polar Biology 3, 151-163.Google Scholar
  53. Ernsting, G., Brandjes, G.J., Block, W. and Isaaks, J.A. (1999) Life-history consequences of predation for a subantarctic beetle: evaluating the contribution of direct and indirect effects, Journal of Animal Ecology 68, 741-752.Google Scholar
  54. Fike, D.A., Cockell, C., Pearce, D. and Lee, P. (2002) Heterotrophic microbial colonization of the interior of impact-shocked rocks from Haughton impact structure, Devon Island, Nunavut, Canadian High Arctic, International Journal of Astrobiology 1, 311-323.Google Scholar
  55. Finlay, B.J. (2002) Global dispersal of free-living microbial eukaryote species, Science 296, 1061-1063.PubMedGoogle Scholar
  56. Frenot, Y., Chown, S.L., Whinam, J., Selkirk, P., Convey, P., Skotnicki, M. and Bergstrom, D. (2005) Biological invasions in the Antarctic: extent, impacts and implications, Biological Reviews, 80, 45-72.PubMedGoogle Scholar
  57. Friedmann, E. I. (1982) Endolithic microorganisms in the Antarctic cold desert Science 215, 1045-1053.Google Scholar
  58. Fowbert, J.A. and Smith, R.I.L. (1994) Rapid population increases in native vascular plants in the Argentine Islands, Antarctic Peninsula, Arctic and Alpine Research 26, 290-296.Google Scholar
  59. Fox, A.J. and Cooper, A.P.R. (1998) Climate-change indicators from archival aerial photography of the Antarctic Peninsula, Annals of Glaciology 27, 636-642.Google Scholar
  60. Galloway, D. (1987) Austral lichen genera: some biographical problems, Progress and Problems in Lichenology in the Eighties. Bibl. Lichenol 25, 385-399. J. Cramer, Berlin-Stuttgart, Germany.Google Scholar
  61. Gauthier-Clerc, M., Jiguet, F. and Lambert, N. (2002) Vagrant birds at Possession Island, Crozet Islands and Kerguelen Island from December 1995 to December 1997, Marine Ornithology 30, 38-39.Google Scholar
  62. Gilichinsky, D.A. (2001) Permafrost a model of extraterrestrial habitat. In G. Horneck and C. Baumstark-Khan (eds.) Astrobiology. The quest for conditions of life. Springer-Verlag, Berlin, Germany, pp. 125-142.Google Scholar
  63. Greenslade, P., Farrow, R.A. and Smith, J.M.B. (1999) Long distance migration of insects to a subantarctic island, Journal of Biogeography 26, 1161-1167.Google Scholar
  64. Gressitt, J.L. (1964) Insects of Campbell Island, Pacific Insects Monograph 7, 1-663.Google Scholar
  65. Gressitt, J.L., Larch, R.E. and O’Brien, C.W. 1960. Trapping air-borne insects in the Antarctic area. Pacific Insects 2, 245-250.Google Scholar
  66. Hansen, J., Ruedy, R., Glasgoe, J. and Sato, M. (1999) GISS analysis of surface temperature change, Journal of Geophysical Research 104, 30997-31022.Google Scholar
  67. Hennion, F., Huiskes, A.H.L., Robinson, S. and Convey, P. (2006) Physiological traits or organisms in a changing environment, in D.M. Bergstrom, P. Convey, and A.H.L. Huiskes (eds.), Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, Springer, Dordrecht (this volume).Google Scholar
  68. Hodkinson, I.D., Webb, N.R. and Coulson, S.J. (2002) Primary community assembly on land – the missing stages: why are the heterotrophic organisms always there first? Journal of Ecology 90, 569-577.Google Scholar
  69. Houghton, J.T., Ding, Y., Griggs, D.J., Noquer, M., van der Linden, P.J., Dai, X., Maskell, K. and Johnson, C.A. (eds) (2001) Climate change 2001: The scientific basis: contribution of working group I to the third assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, UK.Google Scholar
  70. Hughes, K. A. and Lawley, B. (2003) A novel Antarctic microbial endolithic community within gypsum crust Environmental Microbiology 5, 555-565.PubMedGoogle Scholar
  71. Hughes, K. A., Lawley, B. and Newsham, K. K. (2003) Solar UV-B radiation inhibits the growth of Antarctic terrestrial fungi Applied and Environmental Microbiology 69, 1488-1491.PubMedGoogle Scholar
  72. Hughes, K. A., McCartney, H. A., Lachlan-Cope, T. A. and Pearce D. A. (2004) A preliminary study of airborne microbial biodiversity over peninsular Antarctica, Cellular and Molecular Biology 50, 537-542.PubMedGoogle Scholar
  73. Huiskes, A.H.L., Convey, P. and Bergstrom, D.M. (2006) Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator In: Bergstrom, D.M., Convey, P. and Huiskes, A.H.L. (eds) Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator. Springer, Dordrecht (this volume).Google Scholar
  74. Jahns, H.M. (1982) The cyclic development of mosses and the lichen Baeomyces rufus in an ecosystem, Lichenologist 14, 261-265.Google Scholar
  75. Kappen, L. (2004) The diversity of lichens in Antarctica, a review and comments. Contributions to Lichenology. Festschrift in Honour of Hannes Hertel. P. Döbbeler and G. Rambold (eds.) Bibl. Lichenol. 88, 331-343. J. Cramer, Berlin-Stuttgart.Google Scholar
  76. Kennedy, A.D. (1993) Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis Arctic and Alpine Research 25, 308-315.Google Scholar
  77. Kennedy, A. (1995) Antarctic terrestrial ecosystem response to global environmental change, Annual Review of Ecology and Systematics 26, 683-704.Google Scholar
  78. King, J.C., Turner, J., Marshall, G.J., Connolley, W.M. and Lachlan-Cope, T.A. (2003) Antarctic Peninsula climate variability and its causes as revealed by analysis of instrumental records, Antarctic Research Series 79, 17-30.Google Scholar
  79. Kottmeier, C. and Fay, B. (1998) Trajectories in the Antarctic lower troposphere, Journal of Geophysical Research 103, 10947-10959.Google Scholar
  80. Lawley, B., Ripley, S., Bridge, P. and Convey, P. (2004) Molecular analysis of geographic patterns in eukaryotic diversity of Antarctic soils, Applied and Environmental Microbiology 70, 5963-5972.PubMedGoogle Scholar
  81. Linskens, H.F., Bargagli, R., Cresti, M. and Focardi, S. (1993) Entrapment of long-distance transported pollen grains by various moss species in coastal Victoria Land, Antarctica, Polar Biology 13, 81-87.Google Scholar
  82. Longton, R.E. (1988) The biology of polar bryophytes and lichens, Cambridge University Press, Cambridge, 391 pp.Google Scholar
  83. Lud, D., Huiskes, A.H.L., Moerdijk, T.C.W. and Rozema, J. (2001) The effects of altered levels of UV-B radiation on an Antarctic grass and lichen, Plant Ecology 154, 87-99.Google Scholar
  84. Marshall, W.A. (1996) Biological particles over Antarctica, Nature, 383, 680.Google Scholar
  85. Marshall, W.A. and Convey, P. (1997) Dispersal of moss propagules on Signy Island, maritime Antarctic, Polar Biology 18, 376-383.Google Scholar
  86. Mason, B. J. (1971) Global atmospheric research programme, Nature 233, 382-388.PubMedGoogle Scholar
  87. McGraw J.B. and Day, T.A. (1997) Size and characteristics of a natural seed bank in Antarctica, Arctic and Alpine Research 29, 213-216.Google Scholar
  88. Miles, C.J. and Longton, R.E. (1992) Deposition of moss spores in relation to distance from parent gametophytes, Journal of Bryology 17, 355-368.Google Scholar
  89. Moore, P.D. (2002) Springboards for springtails, Nature 418, 381.PubMedGoogle Scholar
  90. Muñoz, J., Felicìsimo, A.M., Cabezas, F., Burgaz, A.R. and Martìnez, I. (2004) Wind as a long-distance dispersal vehicle in the Southern Hemisphere, Science 304, 1144-1147.PubMedGoogle Scholar
  91. Naeem, S. (1998) Species redundancy and ecosystem reliability, Conservation Biology 12, 39-45.Google Scholar
  92. Newsham, K.K., Hodgson, D.A., Murray, A.W.A., Peat, H.J. and Smith, R.I.L. (2002) Response of two Antarctic bryophytes to stratospheric ozone depletion, Global Change Biology 8, 972-983.Google Scholar
  93. Nienow, J.A. and Friedmann, E.I. (1993) Terrestrial lithophytic (rock) communities. In E.I. Friedmann (ed.) Antarctic microbiology. Wiley-Liss, New York, USA, pp. 343-412.Google Scholar
  94. Ott, S. (2004) Early stages of development in Usnea antarctica Du Rietz in the South Shetland Islands, northern maritime Antarctic, The Lichenologist, 36, 413-423.Google Scholar
  95. Pearce, D.A., van der Gast, C.J., Lawley, B. and Ellis-Evans, J.C. (2003) Bacterioplankton community diversity in a maritime Antarctic lake, determined by culture-dependent and culture independent techniques, FEMS Microbial Ecology 45, 59-70.Google Scholar
  96. Peck, L.S., Convey, P. and Barnes, D.K.A. (2006) Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability, Biological Reviews.Google Scholar
  97. Potts, M. (1994) Desiccation tolerance of prokaryotes, Microbiological Reviews 58, 755-805.PubMedGoogle Scholar
  98. Pugh, P.J.A. (1997) Acarine colonization of Antarctica and the islands of the Southern Ocean: the role of zoohoria, Polar Record 33, 113-122.Google Scholar
  99. Pugh, P.J.A. (2003) Have mites (Acarina: Arachnida) colonised Antarctica and the islands of the Southern Ocean via air currents? Polar Record 39, 239-244.Google Scholar
  100. Quesada, A. and Vincent, W.F. (1997) Strategies of adaptation by Antarctic cyanobacteria to ultraviolet radiation, European Journal of Phycology 32, 335-342.Google Scholar
  101. los Rios, A., Wierzchos, J., Sancho, L. and Ascaso, C. (2003) Acid microenvironments in microbial biofilms of Antarctic endolithic microecosystems, Environmental Microbiology 5, 231-237.Google Scholar
  102. Romeike, J., Friedl, T., Helms, G. and Ott, S. (2002) Genetic diversity of algal and fungal partners in four species of Umbilicaria (lichenized Ascomycetes) along a transect of the Antarctic Peninsula, Molecular Evolution and Biology 19, 1209-1217.Google Scholar
  103. Russell, N.J. (2000) Toward a molecular understanding of cold activity of enzymes from psychrophiles, Extremophiles 4, 83-90.PubMedGoogle Scholar
  104. Sancho, L.G. and Pintado, A. (2004) Evidence of high annual growth rate for lichens in the maritime Antarctic, Polar Biology 27, 312-319.Google Scholar
  105. Schaper, T. and Ott, S. (2003) Photobiont selectivity and interspecific interactions in lichen communities. I. Culture experiments with the mycobiont Fulgensia bracteata, Plant Biology 5, 441-450.Google Scholar
  106. Schlichting, H.E., Speziale, B.J. and Zink, R.M. (1978) Dispersal of algae and protozoa by Antarctic flying birds, Antarctic Journal of the USA 13, 147-149.Google Scholar
  107. Siebert, J., Hirsh, P., Hoffman, B., Gliesche, C.G., Peisse, K. and Jendrach, M. (1996) Cryptoendolithic microorganisms from Antarctic sandstones of Linnaeus Terrace (Asgard Range): diversity, properties and interactions, Biodiversity and Conservation 5, 1337-1363.Google Scholar
  108. Smith, A.M., Vaughan, D.G., Doake, C.S.M. and Johnson, A.C. (1999) Surface lowering of the ice ramp at Rothera Point, Antarctic Peninsula, in response to regional climate change, Annals of Glaciology 27, 113-118.Google Scholar
  109. Smith, R.I.L. (1988) Recording bryophyte microclimate in remote and severe environments, In J.M. Glime (ed.), Methods in Bryology, Hattori Botanical Laboratory, Nichinan, Japan, pp. 275-284.Google Scholar
  110. Smith, R.I.L. (1990) Signy Island as a paradigm of biological and environmental change in Antarctic terrestrial ecosystems, in K.R. Kerry and G. Hempel (eds), Antarctic Ecosystems, Ecological Change and Conservation, Springer, Berlin, Germany, pp 32-50.Google Scholar
  111. Smith, R.I.L. (1991) Exotic sporomorpha as indicators of potential immigrant colonists in Antarctica, Grana 30, 313-324.Google Scholar
  112. Smith, R.I.L. (1993) The role of bryophyte propagule banks in primary succession: case-study of an Antarctic fellfield soil, in: J. Miles and D.W.H. Walton, (eds), Primary Succession on Land, British Ecological Society Special Publication, Blackwell Scientific Publications, Oxford, UK, pp 55-78.Google Scholar
  113. Smith, R.I.L. (1994) Vascular plants as indicators of regional warming in Antarctica, Oecologia 99, 322-328.Google Scholar
  114. Smith, R.I.L. (1995) Colonization by lichens and the development of lichen-dominated communities in the maritime Antarctic, Lichenologist 27, 473-483.Google Scholar
  115. Smith, R.I.L. (2000) Plants of extreme habitats in Antarctica, in B. Schroeter, M. Schlensog and T.G.A. Green (eds.), New Aspects in Cryptogamic Research. Contributions in Honour of Ludger Kappen. Bibl. Lichenol. 75: 405-419. J. Cramer, Berlin-Stuttgart, Germany.Google Scholar
  116. Smith R.I.L. (2001) Plant colonization response to climate change in the Antarctic, Folia Fac. Sci. Nat. Univ. Masarykianae Brunensis, Geographia 25, 19-33.Google Scholar
  117. Stevens, M.I., and Hogg, I.D. (2003) Long-term isolation and recent range expansion from glacial refugia revealed for the endemic springtail Gomphiocephalus hodgsoni from Victoria Land, Antarctica, Molecular Ecology 12, 2357-2369.PubMedGoogle Scholar
  118. Sun, H.J. and Friedmann, E.I. (1999) Growth on geological time scales in the Antarctic cryptoendolithic microbial community, Geomicrobiological Journal 16, 193-202.Google Scholar
  119. Tindall, B.L. (2004) Prokaryotic diversity in the Antarctic: the tip of the iceberg, Microbial Ecology 47, 271-283.PubMedGoogle Scholar
  120. Turner, J., Colwell, S.R. and Harangozo, S. (1997) Variability of precipitation over the coastal western Antarctic Peninsula from synoptic observations, Journal of Geophysical Research 102, 13999-14007.Google Scholar
  121. Vaughan, D.G. and Doake, C.S.M. (1996) Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula, Nature 379, 328-331.Google Scholar
  122. Vaughan, D.G., Marshall, G.J., Connolley, W.M., Parkinson, C., Mulvaney, R., Hodgson, D.A., King, J.C., Pudsey, C.J. and Turner, J. (2003) Recent rapid regional climate warming on the Antarctic Peninsula, Climate Change 60, 243-274.Google Scholar
  123. Wharton, D.A. (2002) Life at the limits: organisms in extreme environments, Cambridge University Press, Cambridge, UK, 307 pp.Google Scholar
  124. Wharton, D.A. and Ferns, D.J. (1995) Survival of intracellular freezing by the Antarctic nematode Panagrolaimus davidi, Journal of Experimental Biology 198, 1381-1387.PubMedGoogle Scholar
  125. Whinam, J., Chilcott, N. and Bergstrom, D.M. (2005) Subantarctic hitchhikers: expeditioners as vectors for the introduction of alien organisms, Biological Conservation 121, 207-219.Google Scholar
  126. Williams, P.G., Roser, D.J. and Seppelt, R.D. (1994) Mycorrhizas of hepatics in continental Antarctica, Mycological Research 98, 34-36.Google Scholar
  127. Wynn-Williams, D.D. (1990) Microbial colonization processes in Antarctic fellfield soils – an experimental overview, Proceedings of the NIPR Symposia on Polar Biology 3, 164-178.Google Scholar
  128. Wynn-Williams, D.D. (1991) Aerobiology and colonization over Antarctica – the BIOTAS programme, Grana 30, 380-393.Google Scholar
  129. Wynn-Williams, D.D. (1993) Microbial processes and initial stabilization of fellfield soil. In J. Miles and D.W.H. Walton (eds.) Primary succession on land, Blackwell, Oxford, UK, pp. 17-32.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • K. A. Hughes
    • 1
  • S. Ott
    • 2
  • M. Bölter
    • 3
  • P. Convey
    • 4
  1. 1.British Antarctic SurveyNatural Environment Research CouncilCambridge CB3 0ETUnited Kingdom
  2. 2.Botanisches InstitutHeinrich-Heine Universität DüsseldorfUniversitätsstr. 1, D-40225 DüsseldorfGermany
  3. 3.Institute for Polar EcologyUniversity of KielWischhofstr. 1-3Germany
  4. 4.British Antarctic SurveyNatural Environment Research CouncilCambridge CB3 0ETUnited Kingdom

Personalised recommendations