Landscape Control of High Latitude Lakes in a Changing Climate

  • A. Quesada
  • W. F. Vincent
  • E. Kaup
  • J. E. Hobbie
  • I. Laurion
  • R. Pienitz
  • J. LÓPez-MartÍNez
  • J.-J. DuráN

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ACIA (2004) Impacts of a Warming Arctic: Arctic Climate Impact Assessment. Cambridge University Press, 140 pp.Google Scholar
  2. Adamson, D.A., Mabin, M.C.G. and Luly, J.G. (1997) Holocene isostasy and late Cenozoic development of landforms including Beaver and Radok Lake basins in the Amery Oasis, Prince Charles Mountains, Antarctica, Antarctic Science 9, 299-306.Google Scholar
  3. Agafonov, L., Strunk, H. and Nuber, T. (2004) Thermokarst dynamics in Western Siberia: insights from dendrochronological research, Palaeogeography Palaeoclimatology Palaeoecology, 209, 183-196.CrossRefGoogle Scholar
  4. Andersen, D.T., Pollard, W.H., McKay, C.P. and Heldmann, J. (2002) Cold springs in permafrost on Earth and Mars. Journal of Geophysical Research-Planets, 107, 10.1029.Google Scholar
  5. Anisimov, O.A., Shiklomanov, N.I. and Nelson, F.E. (1997) Global warming and active layer thickness: results from transient general circulation models. Global and Planetary Change, 15, 61-77.CrossRefGoogle Scholar
  6. Barber, D.C., Dyke, A., Hillaire-Marcel, C., Jennings, A.E., Andrews, J.T., Kerwin, M.W., Bilodeau, G,. McNeely, R. Southon, J., Morehead, M.D. and Gagnon, J.-M. (1999) Forcing of the cold event 8200 years ago by catastrophic drainage of Laurentide lakes, Nature, 400, 344-348.CrossRefGoogle Scholar
  7. Bayly, I.A.E. (1986) Ecology of the zooplankton of a meromictic Antarctic lagoon with special reference to Drepanopus bispinosus(Copepoda: Calanoida), Hydrobiologia, 140, 199-231.CrossRefGoogle Scholar
  8. Benda, L., Poff, N.L., Miller, D., Dunne, T., Reeves, G., Pess, G., and Pollock M. (2004) The network dynamics hypothesis: How channel networks structure riverine habitats. BioScience 54, 413-427.CrossRefGoogle Scholar
  9. Bertilsson, S., Tranvik, L.J. (2000) Photochemical transformation of dissolved organic matter in lakes. Limnology and Oceanography 45, 753-762.CrossRefGoogle Scholar
  10. Björck, S., Hakansson, H., Olsson, S., Barnekow, L., and Janssens, J. (1993) Paleoclimatic studies in South Shetland Islands, Antarctica, based on numerous stratigraphic variables in lake sediments, Journal of Paleolimnology, 8, 233-272.Google Scholar
  11. Björck, S., Hakansson, H., Zale, R., Karlen, W., and Jönsson, B.L. (1991) A late Holocene lake sediment sequence from Livingston Island, South Shetland Islands, with paleoclimatic implications, Antarctic Science, 3, 61-72.Google Scholar
  12. Bockheim, J.G., Everett, L.R., Hinkel, K.M., Nelson, F.E. and Brown, J. (1999) Soil organic carbon storage and distribution in Arctic Tundra, Barrow, Alaska. Soil Science Society of America Journal 63, 934-940.CrossRefGoogle Scholar
  13. Bowden, W.B. and Group, S.B. (1999) Roles of bryophytes in stream ecosystems. Journal of the North American Benthological Society 18, 151-184.CrossRefGoogle Scholar
  14. Bulat, S.A., Alekhina, I.A., Blot, M., Petit, J-R., Angelis, M., Wagenbach, D., Lipenkov, V.Y., Vasilyeva, L.P. Wloch. D.M., Raynaud, D. and Lukin, V.V. (2004) DNA signature of thermophilic bacteria from the aged accretion ice of Lake Vostok, Antarctica: implications for searching for life in extreme icy environments, International Journal of Astrobiology, 3, 1-12.CrossRefGoogle Scholar
  15. Burgess, J.S., Kaup, E. (1997) Some aspects of human impact on lakes in the Larsemann Hills, Princess Elizabeth Land, Eastern Antarctica, in W.B. Lyons, C. Howard-Williams and I. Hawes (eds.), Ecosystem Processes in Antarctic Ice-free Landscapes. Balkema, Rotterdam, pp. 259-264.Google Scholar
  16. Burgess, J.S., Spate, A.P. and Shevlin, J. (1994) The onset of deglaciation in the Larsemann Hills, Eastern Antarctica. Antarctic Science, 6, 491-495.Google Scholar
  17. Campbell, I.B. and Claridge, G.G.C. (1987) Antarctica: Soils weathering processes and environment, Elsevier, Amsterdam, The Netherlands.Google Scholar
  18. Campbell, I.B., Claridge, G.G.C. and Balks, M.R. (1994) The effect of human activities on moisture content of soils and underlying permafrost from the McMurdo Sound region, Antarctica. Antarctic Science, 6, 307-316.Google Scholar
  19. Campbell I.B., Claridge G.G.C., Campbell D.I. and Balks M.R. (1998) The soil environment of the McMurdo Dry Valleys, Antarctica, in J.C. Priscu (ed.), Ecosystem dynamics in a polar desert: The McMurdo Dry Valleys, Antarctica . American Geophysical Union, Washington, USA, pp. 297-320.Google Scholar
  20. Cannone, N. and Guglielmin, M. (2003) Vegetation and permafrost: sensitive systems for the development of a monitoring program of climate change along an Antarctic transect, in, A.H.L. Huiskes, W.W.C. Gieskes, J. Rozema, R.M.L. Schorno, S.M. van der Vries, and W.J. Wolff (eds.) Antarctic Biology in a Global Context, Backhuys Publishers, Leiden, pp.31-36.Google Scholar
  21. Carpenter, S.R., Cole, J.J., Kitchell, J.F. and Pace, M.L. (1998) Impact of dissolved organic carbon, phosphorus, and grazing on phytoplankton biomass and production in experimental lakes. Limnology and Oceanography, 43, 73–80.CrossRefGoogle Scholar
  22. Chinn, T.J. (1993) Physical hydrology of the dry valley lakes, in W.J. Green and E.I. Friedmann (eds.), Physical and Biogeochemical Processes in Antarctic Lakes, Antarctic Research Series, Vol. 59, American Geophysical Union, pp. 1-51.Google Scholar
  23. Christensen, T.R., Johansson, T., Akerman, H.J., Mastepanov, M., Malmer, N., Friborg, T., Crill, P. and Svensson, B.H. (2004) Thawing sub-arctic permafrost: Effects on vegetation and methane emissions, Geophysical Research Letters, 31,L04501.CrossRefGoogle Scholar
  24. Clarke, A., Barnes, D.K.A. and Hodgson, D.A. (2005) How isolated is Antarctica? Trends In Ecology and Evolution 20, 1-3.PubMedCrossRefGoogle Scholar
  25. Conca, J. and Malin, M. (1986) Solution etch pits in dolerite from the Allan Hills, Antarctic Journal of the US 21, 18-19.Google Scholar
  26. Conca, J. and Wright, J. (1987) The aqueous chemistry of weathering solutions in dolerite of the Allan Hills, Victoria Land, Antarctica. Antarctic Journal of the US 23, 42-44.Google Scholar
  27. Convey, P. (2003) Soil faunal community response to environmental manipulation on Alexander Island, southern maritime Antarctic, in, A.H.L. Huiskes, W.W.C. Gieskes, J. Rozema, R.M.L: Schorno, S.M. ven der Vies, W.J. Wolff (eds.). Antarctic Biology in a global context. Backhuys Publishers. Leiden pp. 74-78.Google Scholar
  28. Convey, P. (2006) Antarctic climate change and its influences on terrestrial ecosystems, in D.M. Bergstrom, P. Convey, and A.H.L. Huiskes (eds.), Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, Springer, Dordrecht (this volume).Google Scholar
  29. Convey, P., Frenot, Y., Gremmen, N. and Bergstrom, D.M. (2006a) Biological invasions, in D.M. Bergstrom, P. Convey, and A.H.L. Huiskes (eds.), Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, Springer, Dordrecht (this volume).Google Scholar
  30. Cromer, L., Gibson, J.A.E., Swadling, K.M. and Ritz, D.A. (2005) Faunal microfossils: indicators of Holocene ecological change in a saline Antarctic lake. Palaeogeography Palaeoclimatology Palaeoecology, 221, 83-97.CrossRefGoogle Scholar
  31. Cuchì, J.A., Duràn, J.J., Alfaro, P., Serrano, E. and Lòpez-Martìnez, J. (2004) Discriminaciòn mediante paràmetros fisicoquìmicos in situ de diferentes tipos de agua presentes en un àrea con permafrost (Penìnsula Byers, Isla Livingston, Antàrtida Occidental). Boletìn de la Real Sociedad Española de Historia Natural (secc. Geol.) 99, 75-82.Google Scholar
  32. De Haan, H. (1993) Solar UV-light penetration and photodegradation of humic substances in peaty lake water. Limnology and Oceanography 38, 1072–1076.CrossRefGoogle Scholar
  33. del Giorgio, P.A., Davis, J. (2003) Patterns in dissolved organic matter lability and consumption across aquatic ecosystems, in S.E.G. Findlay, R.L. Sinsabaugh (eds.) Aquatic Ecosystems: interactivity of dissolved organic matter. Academic Press, San Diego, pp. 399-424.Google Scholar
  34. Doran, P.T., Wharton, R.A., Lyons, W.B., DesMarais, D.J., and Andersen, D.T. (2000) Sedimentology and Geochemistry of a Perennially Ice-Covered Epishelf Lake in Bunger Hills Oasis, East Antarctica. Antarctic Science 12, 131-140.PubMedGoogle Scholar
  35. Doran, P.T., Priscu J.C., Lyons, W.B., Walsh, J.E., Fountain, A.G., McKnight, D.M., Moorhead, D.L., Virginia, R.A., Wall, D.H., Clow, G.D., Fritsen, C. H., McKay, C. P. and Parsons, A.N. (2002) Antarctic climate cooling and terrestrial ecosystem response. Nature 415, 517-520.PubMedCrossRefGoogle Scholar
  36. Ellis-Evans, J.C. (1996) Microbial diversity and function in Antarctic freshwater ecosystems, Biodiversity and Conservation 5, 1395-1431.CrossRefGoogle Scholar
  37. Ellis-Evans, J.C., Laybourn-Parry, J., Bayliss, P. and Perriss, S. (1997) Human impact on an oligotrophic lake in the Larsemann Hills, in B. Battaglia, J. Valencia, and D.W.H. Walton (eds.), Antarctic Communities: Species, Structure and Survival, Cambridge University Press, Cambridge, pp. 396-404.Google Scholar
  38. Engstrom, D.R., Fritz, S.C., Almendinger, J.E. and Juggins, S. (2000) Chemical and biological trends during lake evolution in recent deglaciated terrain, Nature 408, 161-166.PubMedCrossRefGoogle Scholar
  39. Ernsting, G., Block, W., MacAlister, H., and Todd, C. (1995) The invasion of the carnivorous carabid beetle Trechisibus antarcticus on South Georgia (sub-Antarctic) and its effect on the endemic herbivorous beetle Hydromedion sparsutum. Oecologia 103, 34-42.CrossRefGoogle Scholar
  40. Frauenfeld, O.W., Zhang, T.J., Barry, R.G. and Gilichinsky, D. (2004) Interdecadal changes in seasonal freeze and thaw depths in Russia, Journal of Geophysical Research-Atmospheres 109,D5.Google Scholar
  41. Freeman, C., Evans, C.D., Monteith, D.T., Reynolds, B. and Fenner, N. (2001) Export of organic carbon from peat soils, Nature, 412, 785.PubMedCrossRefGoogle Scholar
  42. Frenot, Y., Chown, S., Whinam, J., Selkirk, P.M., Convey, P., Skotnicki, M., and Bergstrom D.M. (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biological Reviews 80, 45-72.PubMedCrossRefGoogle Scholar
  43. Gallagher, J.B., Burton H.R., and Calf, G.E. (1989) Meromixis in an Antarctic fjord: a precursor to meromictic lakes on an isostatically rising coastline, Hydrobiologia 172, 235-54.CrossRefGoogle Scholar
  44. Gebauer, R., Grulke, N.E., Hahn, S.C., Lange, O.L., Oberbauer, S.F., Reynolds, J.F., Tenhunen, J.D. and Inhunen, J.D. (1996) Vegetation structure and aboveground carbon and nutrient pools in the Imnavait Creek watershed. Landscape function and disturbance in Arctic tundra, Berlin. Springer-Verlag, pp. 109-128.Google Scholar
  45. Gerighausen, U., Bräutigam, K., Mustafa, O. and Peter, H.-U. (2003) Expansion of vascular plants on an Antarctic island – a consequence of climate change? In A.H.L. Huiskes, W.W.C. Gieskes, J. Rozema, R.M.L. Schorno, S.M. van der Vies and W.J. Wolff (eds.) Antarctic Biology in a Global Context, Backhuys, Leiden, pp. 79-83.Google Scholar
  46. Gettel, G. (2006) Nitrogen cycling in lakes on different glacial surfaces in northern Alaska. PhD thesis, Cornell University, Ithaca, N.Y.Google Scholar
  47. Giblin, A. E., Nadelhoffer, K., Shaver, G.R., and Laundre, J.A. (1991) Biogeochemical diversity along a riverside toposequence. Ecological Monographs 61, 415-435.CrossRefGoogle Scholar
  48. Gibson, J.A.E. (1999) The meromictic lakes and stratified marine basins of the Vestfold Hills, East Antarctica. Antarctic Science, 11, 175-192.Google Scholar
  49. Gibson, J.A.E., and Andersen, D.T. (2002) Physical structure of epishelf lakes of the southern Bunger Hills, East Antarctica Antarctic Science 14, 253-262.CrossRefGoogle Scholar
  50. Gibson, J.A.E., Vincent, W.F. and Pienitz, R. (2001) Hydrologic control and diurnal photobleaching of CDOM in a subarctic lake. Archives for Hydrobiology 152, 143-159.Google Scholar
  51. Gibson, J.A.E., Wilmotte, A., Taton, A., Van De Vijver, B., Beyens, L. and Dartnall, H.J.G. (2006) Biogeographic trends in Antarctic lake communities, in D.M. Bergstrom, P. Convey, and A.H.L. Huiskes (eds.), Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, Springer, Dordrecht (this volume).Google Scholar
  52. Gorham, E. (1991) Northern peatlands: role in the carbon-cycle and probable responses to climatic warming, Ecological Applications, 1, 182-195.CrossRefGoogle Scholar
  53. Gould, W.A., Raynolds, M. and Walker, D.A. (2003) Vegetation, plant biomass, and net primary productivity patterns in the Canadian Arctic, Journal of Geophysical Research-Atmospheres 108,Google Scholar
  54. Goulden, M.L., Wofsy, S.C., Harden, J.W., Trumbore, S.E., Crill, P.M., Gower, S.T., Fries, T., Daube, B.C., Fan, S.M., Sutton, D.J., Bazzaz, A. and Munger, J.W. (1998) Sensitivity of boreal forest carbon balance to soil thaw Science, 279, 214-217.PubMedCrossRefGoogle Scholar
  55. Green, W.J., Angle, M.P. and Chave, K.E. (1988) The geochemistry of Antarctic streams and their role in the evolution of four lakes of the McMurdo Dry Valleys, Geochimical and Cosmochimica Acta 52, 1265-1274.CrossRefGoogle Scholar
  56. Haendel, D. (1995) On the entry of weathering products into surface waters, in P. Bormann and D. Fritsche (eds.) The Schirmacher Oasis, Queen Maud Land, East Antarctica. Justus Perthes Verlag, Gotha, pp. 305-309.Google Scholar
  57. Haendel, D., Kaup, E.(1995) Nutrients and primary production, in, P. Bormann and D. Fritsche (eds.) The Schirmacher Oasis, Queen Maud Land, East Antarctica. Justus Perthes Verlag, Gotha, pp. 312-319.Google Scholar
  58. Haendel, D., Kaup, E., Loopmann, A. and Wand,U.(1995) Physical and hydrochemical properties of water bodies, in P. Bormann and D. Fritsche (eds.) The Schirmacher Oasis, Queen Maud Land, East Antarctica. Justus Perthes Verlag, Gotha,pp. 279-295.Google Scholar
  59. Hall, K.J. (1992) Mechanical weathering on Livingston Island, South Shetland Islands, Antarctica, in, Y. Yoshida, K. Kaminuma and K. Shiraishi (eds.) Recent Progress in Antarctic Earth Science. Terra, Tokyo, pp 756-762.Google Scholar
  60. Hamilton, T. D. (2003) Glacial Geology of the Toolik Lake and Upper Kuparuk River Regions. Institute of Arctic Biology, University of Alaska, Fairbanks, Series: Biological papers of the University of Alaska. No. 26.Google Scholar
  61. Harris, C.M. (1991) Environmental effects of human activities on King George Island, South Shetland Islands, Antarctica. Polar Record, 27, 313-324.Google Scholar
  62. Hawes, I., Smith, R., Howard-Williams, C., and Schwarz, A-M. (1999) Environmental conditions during freezing, and response of microbial mats in ponds of the McMurdo Ice Shelf, Antarctica, Antarctic Science, 11,198-208.Google Scholar
  63. Hessen, D.O. (1992) Dissolved organic carbon in a humic lake: Effects on bacterial production and respiration. Hydrobiologia 229, 115–123.Google Scholar
  64. Heywood, R.B. (1977) A limnological survey of the Ablation Point area, Alexander Island, Antarctica, Philosophical Transactions of the Royal Society, Series B. 279, 39-54.Google Scholar
  65. Hinzman, L.D., Kane, D.L., Giek, R.E. and Everett, K. (1991) Hydrologic and thermal properties of the active layer in the Alaskan Arctic. Cold Regions Science and Technology, 192, 95-110.CrossRefGoogle Scholar
  66. Hinzman, L.D., Toniolo, H.A., Yoshikawa, K., and Jones, J.B. (2004) Thermokarst development in a changing climate. ACIA International Symposium on Climate Change in the Arctic. Reykjavik.Google Scholar
  67. Hobbie J.E. (1973) Arctic Limnology: A review, in M.E. Britton (ed.), Alaskan Arctic Tundra. Arctic Institute of North America Technical Paper 25. pp. 127-168.Google Scholar
  68. Hobbie, J.E. (1992) Microbial control of dissolved organic carbon in lakes: Research for the future. Hydrobiologia 229, 169–180.Google Scholar
  69. Hobbie, S.E. and Gough, L. (2002) Foliar and soil nutrients in tundra on glacial landscapes of contrasting ages in northern Alaska. Oecologia 131, 453-462CrossRefGoogle Scholar
  70. Hobbie, S.E. and Gough, L. (2004) Litter decomposition in moist acidic and non-acidic tundra with different glacial histories. Oecologia, 140, 113-124.PubMedCrossRefGoogle Scholar
  71. Hobbie, J.E., Shaver, G. Laundre, J., Slavik, K., Deegan, L.A., O‘Brien, J., Oberbauer, S., and MacIntyre, S. (2003) Climate forcing at the Arctic LTER Site, in, D. Greenland, D. Goodin and R. Smith, (eds.) Climate Variability and Ecosystem Response at Long-Term Ecological Research (LTER) Sites. Oxford University Press, New York. pp. 74-91.Google Scholar
  72. Hobbie, J.E., Peterson, B.J., Bettez, N., Deegan, L., O’Brien, W.J., Kling, G.W., Kipphut, G.W., Bowden, W.B. and Hershey, A.E. (1999) Impact of global change on the biogeochemistry and ecology of an Arctic freshwater system, Polar Research, 18, 207-214.CrossRefGoogle Scholar
  73. Hodgson, D.A., Doran, P.T., Roberts, D. and McMinn, A. (2004) Paleolimnological studies from the Antarctic and subantarctic islands, in, R. Pienitz, M.S.V. Douglas, and J.P. Smol (eds.) Long-term Environmental Change in Arctic and Antarctic Lakes. Springer, Berlin/New York. pp. 419-474.Google Scholar
  74. Hughes, K.A., Ott, S., Bölter, M. and Convey, P. (2006) Colonisation processes, in D.M. Bergstrom, P. Convey, and A.H.L. Huiskes (eds.), Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, Springer, Dordrecht (this volume).Google Scholar
  75. Imura, S., Bando, T., Saito, S., Seto, K., and Kanda, H. (1999) Benthic moss pillars in Antarctic lakes, Polar Biology 22, 137-140.CrossRefGoogle Scholar
  76. Jones, V.J., Juggins, S., and Ellis-Evans, J.C. (1993) The relationship between water chemistry and surface sediment diatom assemblages in maritime Antarctic lakes, Antarctic Science, 5, 229-348.Google Scholar
  77. Kalff, J. (2001) Limnology. Prentice Hall. 592pp.Google Scholar
  78. Karentz, D. (2003) Environmental change in Antarctica: ecological impacts and responses, in, A.H.L. Huiskes, W.W.C. Gieskes, J. Rozema, R.M.L. Schorno, S.M. ven der Vies, W.J. Wolff (eds.). Antarctic Biology in a global context. Backhuys Publishers. Leiden pp. 45-55.Google Scholar
  79. Kaup, E. (1998) Trophic status of lakes in Thala Hills -records from the years 1967 and 1988. Proceedings NIPR Symposium Polar Biology, 11, 82-91.Google Scholar
  80. Kaup, E. and Burgess, J.S. (2002) Surface and subsurface flows of nutrients in natural and human impacted lake catchments on Broknes, Larsemann Hills, Antarctica. Antarctic Science, 14, 343-352.CrossRefGoogle Scholar
  81. Kaup, E. and Burgess, J.S. (2003) Natural and human impacted stratification in the shallow lakes of the Larsemann Hills, Antarctica, in: A.H.L. Huiskes, W.W.C. Gieskes, J. Rozema, R.M.L. Schorno, S.M. van der Vries, and W.J. Wolff (eds.) Antarctic Biology in a Global Context, Backhuys Publishers, Leiden, pp. 313-317.Google Scholar
  82. Kaup, E., Ellis-Evans, J.C. and Burgess, J.S. (2001) Increased phosphorus levels in the surface waters of Broknes, Larsemann Hills, Antarctica. Verhandlungen International Vereinigung fur Theoretische und Angewanote Limnology, 27, 3137-3140.Google Scholar
  83. Kennedy, A.D. (1994) Simulated climate change: a field manipulation study of polar microarthropod community response to global warming, Ecography 17, 131-140.CrossRefGoogle Scholar
  84. Kirchman, D.L, Dittel, A.I., Findlay, S.E.G. and Fischer, D. 2004. Changes in bacterial activity and community in response to dissolved organic matter in the Hudson River, New York. Aquatic Microbial Ecology 35, 243-257.Google Scholar
  85. Kling, G.W., Kipphut, G.W. and Miller, M.C. (1991) Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251, 298-301.CrossRefPubMedGoogle Scholar
  86. Kling, G.W., Kipphut, G. W., Miller, M. M., and O’Brien, W. J. (2000) Integration of lakes and streams in a landscape perspective: the importance of material processing on spatial patterns and temporal cohesion. Freshwater Biology 4,477-497.CrossRefGoogle Scholar
  87. Korotkevich, E.S. (1960) Ocean bays in the Schirmacher Hills in Queen Maud Land. Sovetskaia antarkticheskaia ekspeditsiia. Informatsionnyi biulleten. 21, 8-9Google Scholar
  88. Korotkevich, E.S. (1972) Polyarnye pustyni [Polar deserts]. Gidrometeoizdat, Leningrad, ;420 pp.Google Scholar
  89. Landals, A.L. and Gill, D. (1972) Differences in volume of surface runoff during the snowmelt period: Yellowknife, NWT. International Association of Hydrological Sciences Publication 107, 927-942Google Scholar
  90. Laurion, I., Ventura, M., Catalan, J., Psenner, R. and Sommaruga, R. (2000) Attenuation of ultraviolet radiation in mountain lakes: Factors controlling the among- and within-lake variability. Limnology and Oceanography, 45, 1274-1288.CrossRefGoogle Scholar
  91. Laybourn-Parry, J. (2003) Polar limnology, the past, the present and the future, in A.H.L. Huiskes, W.W.C. Gieskes, J. Rozema, R.M.L. Schorno, S.M. van der Vies and W.J. Wolff (eds.) Antarctic Biology in a Global Context, Backhuys Publishers, Leiden, pp. 321-329.Google Scholar
  92. Laybourn-Parry, J., Quayle, W.C., Henshaw, T., Ruddell, A., and Marchant, H.J. (2001) Life on the edge: the plankton and chemistry of Beaver Lake, an ultra-oligotrophic epishelf lake, Antarctica, Freshwater Biology, 46, 1205-1217.CrossRefGoogle Scholar
  93. Lehman, M.K., Davis, R.F., Huot, Y. and Cullen, J.J. (2004) Spectrally weighted transparency in models of water-column photosynthesis and photoinhibition by ultraviolet radiation. Marine Ecology Progress Series, 269, 101-110.Google Scholar
  94. Levine, M.A. and Whalen, S.C. (2001) Nutrient limitation of phytoplankton production in Alaskan Arctic foothill lakes. Hydrobiologia 455, 189-201.CrossRefGoogle Scholar
  95. Lloyd, A.H., Rupp, T.S., Fastie, C.L. and Starfield, A.M. (2002) Patterns and dynamics of treeline advance on the Seward Peninsula, Alaska, Journal of Geophysical Research-Atmospheres 108 D2, Alt 2-1.Google Scholar
  96. Lòpez-Martìnez, J., Serrano. E. and Martìnez de Pisòn, E. (1996) Geomorphological features of the drainage system. In: Supplementary text of the Geomorphological Map of Byers Peninsula.BAS Geomap Series, 5-A, 15-19. Cambridge, British Antarctic SurveyGoogle Scholar
  97. Lotter, A.F. (1999) Late-glacial and Holocene vegetation history and dynamics as shown by pollen and plant macrofossil analyses in annually laminated sediments from Soppensee, central Switzerland. Vegetation History and Archaeobotany 8,165-184. CrossRefGoogle Scholar
  98. Lyons, W.B. and Mayewski, P.A. (1993) The geochemical evolution of terrestrial waters in the Antarctic: the role of rock-water interactions. In: W.J. Green and E.I. Friedmann (eds.), Physical and Biogeochemical processes in Antarctic Lakes. American Geophysical Union, Washington, USA, pp. 135-144.Google Scholar
  99. Lyons, W.B., Welch, K.A., Nezat, C.A., Crick, K., Toxie, J.K., Mastrine, J.A., and McKnight, D.M. (1997) Chemical weathering rates and reactions in the Lake Fryxell Basin, Taylor Valley: Comparisons to temperate river basins, in W.B. Lyons, C. Howard-Williams and I. Hawes (eds.) Ecosystem Processes in Antarctic Ice-free Landscapes. Balkema, Rotterdam, pp. 147-179.Google Scholar
  100. Lyons, B., Welch, K.A., Neumann, K., Toxey, J.K., McArthur, R., Williams, C., McKnight, D.M., MacDonald, and Moorhead D. (1998) Geochemical linkages among glaciers, streams and lakes within the Taylor Valley, Antarctica, in J.C. Priscu (ed.) Ecosystem dynamics in a polar desert: The McMurdo Dry Valleys, Antarctica . American Geophysical Union, Washington, USA, pp. 77-92Google Scholar
  101. MacDonald, G.M., Edwards, T.W.D, Moser, K.A., Pienitz, R. and Smol, J.P. (1993) Rapid response of treeline vegetation and lakes to past climate warming, Nature 361, 243-246.CrossRefGoogle Scholar
  102. Markager, S. and Vincent, W.F. (2000) Spectral light attenuation and the absorption of UV and blue light in natural waters, Limnology and Oceanography 45, 642-650.CrossRefGoogle Scholar
  103. Marsh, P., and Hey, M. (1989) The flooding hydrology of Mackenzie Delta lakes near Inuvik, NWT. Canada, Arctic 42, 41-49.Google Scholar
  104. Matsuoka, N. (1995) Rock weathering processes and landform development in the Sor Rondane Mountains, Antarctica. Geomorphology, 12, 323-339.CrossRefGoogle Scholar
  105. Mazumder, A., Taylor, W.D. (1994) Thermal structure of lakes varying in size and water clarity. Limnology and Oceanography, 39, 968-976.CrossRefGoogle Scholar
  106. McGuire, A.D., Wirth, C., Apps, M., Beringer, J., Clein, J., Epstein, H., Kicklighter, D.W., Bhatti, J., Chapin, F.S., de Groot, B., Efremov, D., Eugster, W., Fukuda, M., Gower, T., Hinzman, L., Huntley, B., Jia, G.J., Kasischke, E., Melillo, J., Romanovsky, V., Shvidenko, A., Vaganov, E. and Walker, D. (2002) Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes, Journal of Vegetation Science 13, 301-314.CrossRefGoogle Scholar
  107. Michelutti, N, Douglas, M.S.V. and Smol, J.P. (2003) Diatom response to recent climatic change in a high arctic lake (Char Lake, Cornwallis Island, Nunavut). Global and Planetary Change 38, 257-271.CrossRefGoogle Scholar
  108. Molot, L.A. and Dillon, P.J. (1997) Photolytic regulation of dissolved organic carbon in northern lakes. Global Biogeochemical Cycles 11, 357-365.CrossRefGoogle Scholar
  109. Mueller, D.R., Vincent, W.F. and Jeffries, M.O. 2003. Break-up of the largest Arctic ice shelf and associated loss of an epishelf lake. Geophysical Research Letters 30: 2031, doi: 10.1029/2003 GL017931.Google Scholar
  110. Navas, A., Lòpez-Martìnez, J., Casas, J., Machìn, J., Serrano, E., Duràn, J.J. and Cuchì, J.A. (2006) Soil characteristics along a transect on raised marine surfaces on Byers Peninsula, South Shetland Islands, in D. Fütterer, D. Damaske, G. Kleinschmidt, H. Muller and F. Tessensohn (eds.) Antarctic contributions to global earth science. Berlin-Heildelberg, Springer.Google Scholar
  111. Nelson, F.E., Anisimov, O.A. and Shiklomanov, N.I. (2001) Subsidence risk from thawing permafrost. The threat to man-made structures across regions in the far north can be monitored. Nature, 410, 889-890.PubMedCrossRefGoogle Scholar
  112. Nichols, R.L. (1960) Geomorphology of Margarite Bay area, Palmer Peninsula, Antarctica. Bulletin of the Geological Society of America, 71, 1421-1450.CrossRefGoogle Scholar
  113. Overland, J.E., Spillane, M.C. and Soreide, N.N. (2004b) Integrated analysis of physical and biological Pan-Arctic change. Climate Change 63, 291-322.CrossRefGoogle Scholar
  114. Overland, J.E., Spillane, M.C., Percival, D.B., Wang, M. and Mofjeld (2004a) Seasonal and regional variation in Pan-Arctic surface air temperature over the instrumental record. J. Climate 17, 3263-3282.CrossRefGoogle Scholar
  115. Peterson, J.A., Finlayson, B.L. and Zhang, Q.S. (1988) Changing distribution of late Quaternary terrestrial lacustrine and littoral environments in the Vestfold Hills, Antarctica. Hydrobiologia, 165, 221-226CrossRefGoogle Scholar
  116. Pickard, J., Adamson, D.A. and Heath, C.W. (1986) The evolution of Watts Lake, Vestfold Hills, East Antarctica, from marine inlet to freshwater lake. Palaeogeography, Palaeoclimatology, Palaeoecology, 53, 271-288.CrossRefGoogle Scholar
  117. Pienitz, R. and Smol, J.P. (1993) Diatom assemblages and their relationship to environmental variables in lakes from the boreal forest-tundra ecotone near Yellowknife, Northwest-Territories, Canada. Hydrobiologia 269, 391-404.CrossRefGoogle Scholar
  118. Pienitz, R. and Vincent, W.F. (2000) Effect of climate change relative to ozone depletion on UV exposure in subarctic lakes. Nature 404, 484-487.PubMedCrossRefGoogle Scholar
  119. Pienitz,R., Douglas, M.S.V. and Smol, J.P. (eds.) (2004) Long-Term Environmental Change in Arctic and Antarctic Lakes. Developments in Paleoenvironmental Research Series, vol. 8, Springer, Berlin/New York, 550 pp.Google Scholar
  120. Pienitz, R., Smol, J.P. and Lean, D.R.S. (1997) Physical and chemical limnology of 24 lakes located between Yellowknife and Contwoyto Lake (Northwest Territories), arctic Canada. Canadian Journal of Fisheries and Aquatic Sciences, 54, 347-358.CrossRefGoogle Scholar
  121. Pienitz, R., Smol, J.P. and MacDonald, G.M. (1999) Paleolimnological reconstruction of Holocene climatic trends from two boreal treeline lakes, Northwest Territories, Canada, Arctic, Antarctic and Alpine Research, 31, 82-93.CrossRefGoogle Scholar
  122. Priscu, J.C. (ed.) (1998)Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica, Antarctic Research Series, Vol. 72, American Geophysical Union, Washington, D.C., 369pp.Google Scholar
  123. Prowse, T.D. and Culp, J.M. (2003) Ice breakup: a neglected factor in river ecology. Canadian Journal of Civil Engineering 30, 128-144.CrossRefGoogle Scholar
  124. Quayle, W.C., Peck, L.S., Peat, H., Ellis-Evans, J.C. and Harrigan, P.R. (2002) Extreme responses to climate change in Antarctic lakes, Science 295, 645.PubMedCrossRefGoogle Scholar
  125. Quayle, W.C, Convey, P., Peck, L.S., Ellis-Evans, J.C., Butler, H.G., and Peat, H.J. (2003) Ecological responses of maritime Antarctic lakes to regional climate change, In E. Domack, A. Burnett, A. Leventer, P. Convey, M. Kirby and R. Bindschadler (eds.), Antarctic Peninsula Climate Variability: Historical and Palaeoenvironmental Perspectives, Antarctic Research Series, Vol. 79, American Geophysical Union, Washington, D.C. pp. 159-170.Google Scholar
  126. Ramlal, P.S., Hesslein, R.H., Hecky, R.E., Fee, E.J., Rudd, J.W.M. and Guildford S.J. (1994) The organic carbon budget of a shallow arctic lake on the Tuktoyaktuk Peninsula, NWT, Canada. Biogeochemistry 24,145-172.CrossRefGoogle Scholar
  127. Roberts, D. and McMinn, A. (1999) A diatom based palaeosalinity history of Ace Lake, Vestfold Hills, Antarctica. The Holocene 9, 401-408.CrossRefGoogle Scholar
  128. Saulnier-Talbot, È., Pienitz, R. and Vincent, W.F. (2003) Holocene lake succession and palaeo-optics of a subarctic lake, northern Quèbec (Canada). The Holocene 13, 517-526.CrossRefGoogle Scholar
  129. Schell, D.M. (1983) C-13 and C-14 abundances in Alaskan aquatic organisms-delayed production from peat in arctic food websScience 219, 1068-1071.CrossRefPubMedGoogle Scholar
  130. Schindler, D.W., Welch, H.E., Kalff, J., Brunskil, G.J. and Kritsch, N. (1974) Physical and chemical limnology of Char Lake, Cornwallis Island (75o N lat). Journal of the Fisheries Research Board of Canada, 31, 585-607.Google Scholar
  131. Schindler, D.W., Beaty K.G., Fee, E.J., Cruikshank, D.R., Debruyn, E.R., Findlay D.L., Linsey G.A., Shearer, J.A., Stainton, M.P., Turner, M.A. (1990) Effects of climatic warming on lakes of the central boreal forest, Science 250, 967-970.CrossRefPubMedGoogle Scholar
  132. Serreze M. C. J. E. Walsh, F. S. Chapin III, T. Osterkamp, M. Dyurgerov, V. Romanovsky, W.C. Oechel, J. Morison, T. Zhang and R.G. Barry (2000) Observational Evidence of Recent Change in the Northern High-Latitude Environment. Climate Change 46, 159-207.CrossRefGoogle Scholar
  133. Simonov, I.M. (1971) Oazisy Vostochnoy Antarktidy [The oases of East Antarctica]. Gidrometeoizdat, 176 pp.Google Scholar
  134. Smith, G.I. and Friedman, I. (1993) Lithology and paleoclimatic implications of lacustrine deposits around Lake Vanda and Don Juan Pond, Antarctica. American Geophysical Union, Washington, D.C. Antarctic Research Series, 59, 83-94.Google Scholar
  135. Smith, L.C., MacDonald, G.M., Velichko, A.A., Beilman, D.W., Borisova, O.K., Frey, K.E., Kremenetski, K.V. and Sheng, Y. (2004) Siberian peatlands a net carbon sink and global methane source since the early Holocene, Science 303, 353-356.PubMedCrossRefGoogle Scholar
  136. Snucins, E.D. and Gunn, J. (2000) Interannual variation in the thermal structure of clear and coloured lakes. Limnology and Oceanography, 45, 1639-1646.CrossRefGoogle Scholar
  137. Sturm, M., Racine, C. and Tape, K. (2001) Increasing shrub abundance in the Arctic, Nature, 411, 546-547.PubMedCrossRefGoogle Scholar
  138. Turetsky, M., Wieder, R.K., Halsey, L., Vitt, D.H. (2002) Current disturbance and the diminishing peatland carbon sink, Geophysical Research Letters, 29, DOI:10.1029/2001GL014000.Google Scholar
  139. Van Hove, P., Belzile, C., Gibson, J.A.E. and Vincent, W.F. (2006) Coupled landscape-lake evolution in the Canadian High Arctic. Canadian Journal of Earth Sciences (in press).Google Scholar
  140. Verkulich, S.R., Melles, M., Hubberten, H.W., and Pushina, Z.V. (2002) Holocene environmental changes and development of Figurnoye Lake in the southern Bunger Hills, East Antarctica, Journal of Paleolimnology 28, 253-267.CrossRefGoogle Scholar
  141. Vincent, W.F. and Pienitz, R. (1996) Sensitivity of high-latitude freshwater ecosystems to global change: Temperature and solar ultraviolet radiation. Geoscience Canada 23, 231-236.Google Scholar
  142. Vincent, W.F., Gibson, J.A.E. and Jeffries, M.O. (2001) Ice shelf collapse, climate change and habitat loss in the Canadian High Arctic. Polar Record 37, 133-142.CrossRefGoogle Scholar
  143. Vincent, W.F., Rautio, M. and Pienitz, R. (2005) Climate control of underwater UV exposure in polar and alpine aquatic ecosystems, in, J.B. Orbaek (ed.). Arctic Environmental Change. Springer (in press).Google Scholar
  144. Vitt, D.H., Halsey, L.A. and Zoltai, S.C. (2000) The changing landscape of Canada’s western boreal forest: the current dynamics of permafrost. Canadian Journal of Forest Research 30, 283-287.CrossRefGoogle Scholar
  145. Wand U., Fischer, L. and Schmitz, W. (1985) Salzausblühungen in der Schirmacher Oase, Ostantarktika. Geod. Geophys. Veröff., Berlin, R. I, 12, 86-87.Google Scholar
  146. Walker, D.A., Binnian, E., Evans, B.M., Lederer, N.D., Nordstrand, E. and Webber, P.J. (1989) Terrain, vegetation, and landscape evolution of the R4D research site, Brooks Range Foothills, Alaska. Holarctic Ecology 12, 238-261.Google Scholar
  147. Walker, D.A., Epstein, H.E., Jia, G.J., Balser, A., Copass, C., Edwards, E.J., Gould, W.A., Hollingsworth, J., Knudson, J., Maier, H.A., Moody, A. and Raynolds, M.K. (2003) Phytomass, LAI, and NDVI in northern Alaska: Relationships to summer warmth, soil pH, plant functional types, and extrapolation to the circumpolar Arctic. Journal of Geophysical Research-Atmospheres 108, D2.Google Scholar
  148. Wetzel, R.G. (2001) Limnology: Lake and River Ecosystems. 850 pp. Academic Press.Google Scholar
  149. Whalen, S.C. and Reeburg, W.S. (1990) Consumption of atmospheric methane by tundra soils, Nature, 346, 160-162.CrossRefGoogle Scholar
  150. Williamson, C.E., Morris, D.P., Pace, M.L. and Olson, A.G. (1999) Dissolved organic carbon and nutrients as regulators of lake ecosystems: Resurrection of a more integrated paradigm. Limnology and Oceanography, 44, 795-803.CrossRefGoogle Scholar
  151. Williamson, C.E., Stemberger, R.S., Morris, D.P., Frost, T.M. and Paulsen, S.G. (1996) Ultraviolet radiation in North American lakes: attenuation estimates from DOC measurements and implications for plankton communities. Limnology and Oceanography 41, 1024-1034.CrossRefGoogle Scholar
  152. Williamson, C.E., Olson, O.G., Lott, S.E., Walker, N.D., Engstrom, D.R. and Hargreaves, B.R. (2001) Ultraviolet radiation and zooplankton community structure following deglaciation in Glacier Bay, Alaska. Ecology 82, 1748-60.CrossRefGoogle Scholar
  153. Woo, M. (2000) Permafrost and hydrology, in M. Nuttall and T.V. Callaghan (eds.), The Arctic: environment, people, policy Harwood Academic Publishers, Amsterdam, The Netherlands pp. 57-96.Google Scholar
  154. Woo, M. and Young, K.L. (2000) Hydrological response of a patchy high Arctic wetland. 12th northern research basins symposium/workshop. Nordic Hydrology, Munksgaard, Copenhagen, Denmark, p. 317-338Google Scholar
  155. Wynn-Williams, D.D. (1980) Seasonal fluctuations in microbial action in Antarctic moss peat. Biological Journal of the Linnean Society, 14, 11-28.Google Scholar
  156. Wynn-Williams, D.D. (1996) Response of pioneer soil microalgal colonists to environmental change in Antarctica. Microbial Ecology, 31, 177-188.CrossRefGoogle Scholar
  157. Zwartz, D., Bird, M., Stone, J. and Lambeck, K. (1998) Holocene sea-level change and ice-sheet history in the Vestfold Hills, East Antarctica. Earth and Planetary Science Letters, 155, 131-145.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • A. Quesada
    • 1
  • W. F. Vincent
    • 2
  • E. Kaup
    • 3
  • J. E. Hobbie
    • 4
  • I. Laurion
    • 5
  • R. Pienitz
    • 6
  • J. LÓPez-MartÍNez
    • 7
  • J.-J. DuráN
    • 8
  1. 1.Departamento de BiologíaUniversidad Autónoma de Madrid28049 MadridSpain
  2. 2.Département de Biologie and Centre d’études nordiquesUniversité LavalSainte-FoyCanada
  3. 3.Institute of Geology at Tallinn University of TechnologyEstonia pst 7, 10143 TallinnEstonia
  4. 4.The Ecosystems CenterMarine Biological Laboratory Woods HoleUSA
  5. 5.Institut national de la recherche scientifique, Centre EauTerre et Environnement and Centre d'études nordiquesQuébecCanada
  6. 6.Département de Géographie and Centre d'études nordiquesUniversité LavalSainte-Foy, QuébecCanada
  7. 7.Departamento de Geología y GeoquímicaUniversidad Autónoma de Madrid28049 MadridSpain
  8. 8.Instituto Geológico y Minero de EspañaRíos Rosas, 23, 28003 MadridSpain

Personalised recommendations