The Proterozoic Fossil Record of Heterotrophic Eukaryotes

  • Susannah M. Porter
Part of the Topics in Geobiology book series (TGBI, volume 27)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, C. W., and Awramik, S. M., 1989, Organic-walled microfossils from the earliest Cambrian or latest Proterozoic Tindir Group rocks, northwest Canada, Precambrian Res. 43: 253–294.CrossRefGoogle Scholar
  2. Allison, C. W., and Hilgert, J. W., 1986, Scale microfossils from the Early Cambrian of Northwest Canada, J. Paleont. 60 (5): 973–1015.Google Scholar
  3. Anbar, A. D., and Knoll, A. H., 2002, Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297: 1137–1142.CrossRefGoogle Scholar
  4. Andersson, J. O., and Roger, A. J., 2002, A cyanobacterial gene in nonphotosynthetic protists—an early chloroplast acquisition in eukaryotes? Curr.Biol. 12: 115–119.CrossRefGoogle Scholar
  5. Arnold, G. L., Anbar, A. D., Barling, J., and Lyons, T. W., 2004, Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans, Science, 304: 87–90.CrossRefGoogle Scholar
  6. Arouri, K. R., Greenwood, P. F., and Walter, M. R., 2000, Biological affinities of Neoproterozoic acritarchs from Australia: microscopic and chemical characterisation, Org. Geochem. 31: 75–89.CrossRefGoogle Scholar
  7. Baldauf, S. L., 2003, The deep roots of eukaryotes, Science 300: 1703–1706.CrossRefGoogle Scholar
  8. Bartley, J. K., 1996, Actualistic taphonomy of Cyanobacteria: implications for the Precambrian fossil record, Palaios 11: 571–586.CrossRefGoogle Scholar
  9. Bartley, J. K., and Kah, L. C., 2004, Marine carbon reservoir, C-org–C-carb coupling, and the evolution of the Proterozoic carbon cycle, Geology 32: 129–132.CrossRefGoogle Scholar
  10. Bass, D., and Cavalier-Smith, T., 2004, Phylum-specific environmental DNA analysis reveals remarkably high global biodiversity of Cercozoa (Protozoa), Int. J. Syst. Evol. Microbiol. 54: 2393–2404.CrossRefGoogle Scholar
  11. Bonner, J. T., 1967, Cellular Slime Molds, Princeton University Press, Princeton, New Jersey.Google Scholar
  12. Bottjer, D. J., and Clapham, M. E., 2006, Evolutionary paleoecology of Ediacaran benthic marine animals. in: Neoproterozoic Geobiology and Paleobiology (S. Xiao and A. J. Kaufman, eds.), Springer, Dordrecht, the Netherlands, pp. 91–114.Google Scholar
  13. Brocks, J. J., Buick, R., Logan, G. A., and Summons, R. E., 2003a, Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia, Geochim. Cosmochim. Acta 67: 4289–4319.CrossRefGoogle Scholar
  14. Brocks, J. J., Buick, R., Summons, R. E., and Logan, G. A., 2003b, A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia, Geochim. Cosmochim. Acta 67: 4321–4335.CrossRefGoogle Scholar
  15. Brocks, J. J., Love, G. D., Summons, R. E., Knoll, A.H., Logan, G. A, Bowden, S. A., 2005, Biomarker evidence for green and purple sulfur bacteria in a stratified Palaeoproterozoic sea, Nature 437: 866–870.CrossRefGoogle Scholar
  16. Butterfield, N. J.,2000, Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic-Neoproterozoic radiation of eukaryotes, Paleobiology 26: 386–404.CrossRefGoogle Scholar
  17. Butterfield, N. J., 2004, A vaucheriacean alga from the middle Neoproterozoic of Spitsbergen: implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion, Paleobiology 30: 231–252.CrossRefGoogle Scholar
  18. Butterfield, N. J., 2005, Probable Proterozoic Fungi, Paleobiology 31: 165–182.CrossRefGoogle Scholar
  19. Butterfield, N. J., and Rainbird, R. H., 1998, Diverse organic-walled fossils, including “possible dinoflagellates” from the early Neoproterozoic of arctic Canada, Geology 26: 963–966.CrossRefGoogle Scholar
  20. Butterfield, N. J., Knoll, A. H., and Swett, K., 1990, A bangiophyte red alga from the Proterozoic of arctic Canada, Science 250: 104–107.CrossRefGoogle Scholar
  21. Butterfield, N. J., Knoll, A. H., and Swett, K., 1994, Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen, Fossils Strata 34: 1–84.Google Scholar
  22. Canfield, D. E., 1998, A new model for Proterozoic ocean chemistry, Nature 396: 450–453.CrossRefGoogle Scholar
  23. Cavalier-Smith, T., 1998, A revised six-kingdom system of life, Biol. Rev. 73: 203–266.CrossRefGoogle Scholar
  24. Condon, D., Zhu, M., Bowring, S., Wang, W., Yang, A., and Jin, Y., 2005, U–Pb ages from the Neoproterozoic Doushantuo Formation, China, Science 308: 95–98.CrossRefGoogle Scholar
  25. Culver, S. J., 1991, Early Cambrian Foraminifera from West Africa, Science 254: 689–691.CrossRefGoogle Scholar
  26. Culver, S. J., 1994, Early Cambrian Foraminifera from the southwestern Taoudeni Basin, West Africa, J. Foram. Res. 24: 191–202.CrossRefGoogle Scholar
  27. Danelian, T., and Moreira, D., 2004, Palaeontological and molecular arguments for the origin of silica-secreting marine organisms, C. R. Palevol 3: 229–236.CrossRefGoogle Scholar
  28. Darby, D. G., 1974, Reproductive modes of Huroniospora microreticulata from cherts of the Precambrian Gunflint Iron-Formation, Geol. Soc. Amer. Bull. 85: 1595–1596.CrossRefGoogle Scholar
  29. de Leeuw, J. W., and Largeau, C., 1993, A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal, and petroleum formation, in: Organic Geochemistry: Principles and Applications (M. H. Engel and S. A. Macko, eds.), Topics in Geobiology, Plenum Press, New York, pp. 23–72.Google Scholar
  30. Deflandre, G., and Deunff, J., 1957, Sur la presence de cilies fossiles de la familie des Folliculinidae dans un silex du Gabon, C. R. Hebd. Séances Acad. Sci. 244: 3090–3093.Google Scholar
  31. Dodge, J. D., and Lee, J. J., 2000, Phylum Dinoflagellata Bütschli, 1885, in: An Illustrated Guide to the Protozoa (J. J. Lee, G. F. Leedale and P. Bradbury, eds.), Society of Protozoologists, Lawrence, Kansas, pp. 656–689.Google Scholar
  32. Dörfelt, H., Schmidt, A. R., Ullman, P., and Wunderlick, J., 2003, The oldest myxogastrid slime mold, Mycol. Res. 107: 123–126.CrossRefGoogle Scholar
  33. Douzery, E. J. P., Snell, E. A., Bapteste, E., Delsuc, F., and Philippe, H., 2004, The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc. Natl. Acad. Sci. USA 101: 15386–15391.CrossRefGoogle Scholar
  34. Fennel, K., Follows, M., and Falkowski, P.G., 2005, The co-evolution of the nitrogen, carbon,and oxygen cycles in the Proterozoic ocean, Am. J. Sci. 305: 526–545.CrossRefGoogle Scholar
  35. Fensome, R. A., Saldarriaga, J. F., and Taylor, F. J. R., 1999, Dinoflagellate phylogeny revisited: reconciling morphological and molecular based phylogenies, Grana 38: 66–80.Google Scholar
  36. Frank, T. D., Kah, L. C., and Lyons, T. W., 2003, Changes in organic matter production and accumulation as a mechanism for isotopic evolution in the Mesoproterozoic ocean, Geol. Mag. 140: 397–420.CrossRefGoogle Scholar
  37. Gehling, J. G., 1999, Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks, Palaios 14: 40–57.CrossRefGoogle Scholar
  38. Gelin, F., Boogers, I., Noordeloos, A. A. M., Damsté, J. S. S., Riegman, R., and Leeuw, J. W. d., 1997, Resistant biomacromolecules in marine microalgae of the classes Eustigmatophyceae and Chlorophyceae: geochemical implications, Org. Geochem. 26: 659–675.CrossRefGoogle Scholar
  39. Gelin, F., Volkman, J. K., Largeau, C., Derenne, S., Damsté, J. S. S., and Leeuw, J. W. D., 1999, Distribution of aliphatic, nonhydrolyzable biopolymers in marine microalgae, Org. Geochem. 30: 147–159.CrossRefGoogle Scholar
  40. German, T., 1979, Nakhodki gribov v Rifee (Discoveries of fungi in the Riphean), in: Paleontologiia Dokembriia i Rannego Kembriia (B. Sokolov, ed.), Nauka, Leningrad, pp. 129–136.Google Scholar
  41. German, T., 1981, Nitchatye mikroorganizmy Lakhandinskoi svity reki Mai [Filamentous microorganisms in the Lakhanda Formation on the Maya River], Paleontol. Zh. 1981(2): 100–107.Google Scholar
  42. German, T. N., 1990, Organic World Billion Year Ago, Nauka, Leningrad.Google Scholar
  43. Gnekow, M. A., 1981, Beobachtungen zur Biologie und Ultrastruktur der moobewohnenden Thecamöbe Nebela tincta (Rhizopoda). Arch. Protistenkd. 124: 36–69.Google Scholar
  44. Gooday, A. J., and Tendal, O. S., 2000, Class Xenophyophorea Schulze, 1904, in: An Illustrated Guide to the Protozoa (J. J. Lee, G. F. Leedale, and P. Bradbury, eds.), Society of Protozoologists, Lawrence, Kansas, pp. 1086–1097.Google Scholar
  45. Graham, L. E., and Wilcox, L. W., 2000, Algae, Prentice Hall, Upper Saddle River, NJ.Google Scholar
  46. Grant, S. W. F., 1990, Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic, Am. J. Sci. 290A: 261–294.Google Scholar
  47. Gray, J., and Boucot, A. J., 1989, Is Moyeria a euglenoid?, Lethaia 22: 447–456.Google Scholar
  48. Grazhdankin, D., and Seilacher, A., 2003, Underground Vendobionta from Namibia, Palaeontology 45: 57–78.CrossRefGoogle Scholar
  49. Gregory, P. H., 1984, The fungal mycelium: an historical perspective, Trans. Br. Mycol. Soc. 82: 1–11.CrossRefGoogle Scholar
  50. Hackett, J. D., Anderson, D. M., Erdner, D. L., and Bhattacharya, D., 2004, Dinoflagellates: a remarkable evolutionary experiment, Am. J. Bot. 91: 1523–1534.Google Scholar
  51. Hagadorn, J. W., Dott, R. H., and Damrow, D., 2002, Stranded on an Upper Cambrian shoreline: Medusae from central Wisconsin, Geology 30: 103–106.CrossRefGoogle Scholar
  52. Han, T.-M., and Runnegar, B. 1992, Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee Iron-Formation, Michigan, Science 257: 232–235.CrossRefGoogle Scholar
  53. Hofmann, H. J., 1994, Proterozoic carbonaceous compressions ("metaphytes" and "worms"), in: Early Life on Earth (S. Bengtson, ed), Columbia University Press, New York, pp. 342–357.Google Scholar
  54. Horodyski, R. J., and Mankiewicz, C., 1990, Possible Late Proterozoic skeletal algae from the Pahrump Group, Kingston Range, southeastern California, Am. J. Sci. 290A: 149–169.Google Scholar
  55. Ingold, C. T., and Hudson, H. J., 1993, The Biology of Fungi, Chapman and Hall, New York.Google Scholar
  56. Javaux, E. J., Knoll, A. H., and Walter, M. R., 2001, Morphological and ecological complexity in early eukaryotic ecosystems, Nature 412: 66–69.CrossRefGoogle Scholar
  57. Jensen, S., Droser, M. L., and Gehling, J. G., 2006, A critical look at the Ediacaran trace fossil record. in: Neoproterozoic Geobiology and Paleobiology (S. Xiao and A. J. Kaufman, eds.), Springer, Dordrecht, the Netherlands, pp. 115–157.Google Scholar
  58. Kamaya, R., Mori, T., Shoji, H., Ageta, H., Chang, H. C., and Hsu, H. Y., 1991, Fern constituents: triterpenes from Oleandra wallichii, Yakugaku Zasshi (J. Pharmaceutical Soc. Japan), 11: 120–125.Google Scholar
  59. Keeling, P. J.,2004, Diversity and evolutionary history of plastids and their hosts, Am. J. Bot. 91: 1481–1493.Google Scholar
  60. Kleemann, G., Poralla, K., Englert, G., Kjosen, H., Liaaen-jensen, N., Neunlist, S., and Rohmer, M., 1990, Tetrahymanol from the phototrophic bacterium Rhodopseudomonas palustris: first report of a gammacerane triterpene from a prokaryote, J. Gen. Microbiol. 136: 2551–2553.Google Scholar
  61. Knoll, A. H., 1996, Archean and Proterozoic paleontology, in: Palynology: Principles and Applications (J. Jansonius and D. C. McGregor, eds.), American Association of Stratigraphic Palynologists Foundation, pp. 51–80.Google Scholar
  62. Leadbetter, B. S. C., and Thomsen, H. A., 2000, Order Choanoflagellida, Kent, 1880, An Illustrated Guide to the Protozoa, Second Edition(J. J. Lee, G. F. Leedale, and P. Bradbury, eds.), Allen Press, Lawrence, Kansas, pp. 14–38.Google Scholar
  63. Leander, B. S., 2004, Did trypanosomatid parasites have photosynthetic ancestors? Trends Microbiol. 12: 251–258.CrossRefGoogle Scholar
  64. Lee, J. J., Leedale, G. F., and Bradbury, P. (eds.), 2000, An Illustrated Guide to the Protozoa, Society of Protozoologists, Lawrence, KS.Google Scholar
  65. Lindgren, S., 1981, Remarks on the taxonomy, botanical affinities, and distribution of leiospheres, Stockh. Contr. Geol. 38: 1–20.Google Scholar
  66. Martí Mus, M., and Moczydlowska, M., 2000, Internal morphology and taphonomic history of the Neoproterozoic vase-shaped microfossils from the Visingsö Group, Sweden, Norsk Geol. Tidsskr. 80: 213–228.CrossRefGoogle Scholar
  67. Martin, F., 1993, Acritarchs: a review, Biol. Rev. 68: 475–538.Google Scholar
  68. McIlroy, D., Green, O. R., and Brasier, M. D., 2001, Palaeobiology and evolution of the earliest agglutinated Foraminifera: Platysolenites, Spirosolenites and related forms, Lethaia 34: 13–29.CrossRefGoogle Scholar
  69. Medioli, F. S., Scott, D. B., Collins, E. S., and McCarthy, F. M. G., 1990, Fossil thecamoebians: present status and prospects for the future, in: Paleoecology, Biostratigraphy, Paleoceanography and Taxonomy of Agglutinated Foraminifera (C. Hemleben et al., eds.), Kluwer Academic, Dordrecht, Netherlands, pp. 813–839.Google Scholar
  70. Meisterfeld, R., 2000a, Order Arcellinida Kent, 1880, in: An Illustrated Guide to the Protozoa (J. J. Lee, G. F. Leedale, and P. Bradbury, eds.), Society of Protozoologists, Lawrence, Kansas, pp. 827–860.Google Scholar
  71. Meisterfeld, R., 2000b, Testate amoebae with filopodia, in: An illustrated guide to the Protozoa (J. J. Lee, G. F. Leedale, and P. Bradbury, eds,), Society of Protozoologists, Lawrence, Kansas, pp. 1054–1084.Google Scholar
  72. Mendelson, C. V., and Schopf, J. W., 1992, Proterozoic and Early Cambrian acritarchs, in: The Proterozoic Biosphere (J. W. Schopf and C. Klein, eds.), Cambridge University Press, Cambridge, pp. 219–232.Google Scholar
  73. Moldowan, J. M., and Talyzina, N. M., 1998, Biogeochemical evidence for dinoflagellate ancestors in the Early Cambrian, Science 281: 1168–1170.CrossRefGoogle Scholar
  74. Moldowan, J. M., Dahl, J., Jacobsen, S. R., Huizinga, B. J., Fago, F. J., Shetty, R., Watt, D. S., and Peters, K. E., 1996, Chemostratigraphy reconstruction of biofacies: molecular evidence linking cyst-forming dinoflagellates with pre-Triassic ancestors, Geology 24: 159–162.CrossRefGoogle Scholar
  75. Moldowan, J. M., Jacobsen, S. R., Dahl, J., Al-Hajji, A., Huizinga, B. J., and Fago, F. J., 2001, Molecular fossils demonstrate Precambrian origins of dinoflagellates, in: The Ecology of the Cambrian Radiation (A. Yu. Zhuravlev and R. Riding, eds.), Columbia University Press, New York, pp. 475–493.Google Scholar
  76. Nikolaev, S. I., Berney, C., Fahrni, J. F., Bolivar, I., Polet, S., Mylnikov, A. P., Aleshin, V. V., Petrov, N. B., and Pawlowski, J., 2004, The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes, Proc. Natl. Acad. Sci. USA 101: 8066–8071.CrossRefGoogle Scholar
  77. Pawlowski, J., Holzmann, M., Fahrni, J., and Richardson, S. L., 2003, Small subunit ribosomal DNA suggests that the xenophyophorean Syringammina corbicula is a foraminiferan, J. Eukaryot. Microbiol. 50: 483–487.CrossRefGoogle Scholar
  78. Peng, P., Sheng, G., Fu, J., and Yan, Y., 1998, Biological markers in 1.7 billion year old rock from the Tuanshanzi Formation, Jixian strata section, North China, Org. Geochem. 29: 1321–1329.CrossRefGoogle Scholar
  79. Peterson, K. J., Waggoner, B., and Hagadorn, J. W., 2003, A fungal analog for Newfoundland Ediacaran fossils, Integr. Comp. Biol. 43: 127–136.CrossRefGoogle Scholar
  80. Philip, G. A., Creevey, C. J., and McInerney, J. O., 2005, The Opisthokonta and the Ecdysozoa may not be clades: stronger support for the grouping of plant and animal than for animal and fungi and stronger support for the Coelomata than Ecdysozoa, Molec. Biol. Evol. 22: 1175–1184.CrossRefGoogle Scholar
  81. Poinar, G., and Poinar, R., 2004, Paleoleishmania proterus n. gen., n. sp., (Trypanosomatidae: Kinetoplastida) from Cretaceous Burmese amber, Protist 155: 305–310.CrossRefGoogle Scholar
  82. Porter, S. M., 2004, The fossil record of early eukaryotic diversification, Paleontol. Soc. Papers 10: 35–50.Google Scholar
  83. Porter, S. M., and Knoll, A. H., 2000, Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon, Paleobiology 26: 360–385.CrossRefGoogle Scholar
  84. Porter, S. M., Meisterfeld, R., and Knoll, A. H., 2003, Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae, J. Paleontol. 77: 409–429.CrossRefGoogle Scholar
  85. Pratt, L. M., Summons, R. E., and Hieshima, G. B., 1991, Sterane and triterpane biomarkers in the Precambrian Nonesuch Formation, North American Midcontinent Rift, Geochim. Cosmochim. Acta 55: 911–916.CrossRefGoogle Scholar
  86. Retallack, G. J., 1994, Were the Ediacaran fossils lichens? Paleobiology 20: 523–544.Google Scholar
  87. Schneider, D. A., Bickford, M. E., Cannon, W. F., Sculz, K. J., and Hamilton, M. A., 2002, Age of volcanic rocks and syndepositional iron formations, Marquette Range Supergroup: implications for the tectonic setting of Paleoproterozoic iron formations of the Lake Superior region, Can. J. Earth Sci. 39: 999–1012.CrossRefGoogle Scholar
  88. Schönborn, W., Dörfelt, H., Foissner, W., Krienitz, L., and Schäfer, U., 1999, A fossilized microcenosis in Triassic amber, J. Eukaryot. Microbiol. 46: 571–584.CrossRefGoogle Scholar
  89. Schopf, J. W., 1968, Microflora of the Bitter Springs Formation, Late Precambrian, central Australia, J. Paleontol. 42: 651–688.Google Scholar
  90. Schopf, J. W., and Barghoorn, E. S., 1969, Microorganisms from the late Precambrian of South Australia, J. Paleontol. 43: 111–118.Google Scholar
  91. Seilacher, A., Grazhdankin, D., and Legouta, A., 2003, Ediacaran biota: the dawn of animal life in the shadow of giant protists, Paleontol. Res. 7: 43–54.CrossRefGoogle Scholar
  92. Shen, Y, Canfield, D.E., and Knoll, A.H., 2002, Middle Proterozoic ocean chemistry: evidence from the McArthur Basin, northern Australia, Am. J. Sci. 302: 81–109.CrossRefGoogle Scholar
  93. Shen, Y., Knoll, A.H., and Walter, M. R., 2003, Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin, Nature 423: 632–635.CrossRefGoogle Scholar
  94. Sherwood-Pike, M., 1991, Fossils as keys to evolution in fungi, BioSystems 25: 121–129.CrossRefGoogle Scholar
  95. Simpson, A. G. B., and Roger, A. J., 2002, Eukaryotic evolution: getting to the root of the problem, Curr. Biol. 12: R691–R693.CrossRefGoogle Scholar
  96. Simpson, A. G. B., and Roger, A. J., 2004, The real ’kingdoms’ of eukaryotes, Curr. Biol. 14: R693–R696.CrossRefGoogle Scholar
  97. Stechmann, A., and Cavalier-Smith, T., 2002, Rooting the eukaryote tree by using a derived gene fusion, Science 297: 89–91.CrossRefGoogle Scholar
  98. Stechmann, A., and Cavalier-Smith, T., 2003, The root of the eukaryote tree pinpointed, Curr. Biol. 13: R665–R666.CrossRefGoogle Scholar
  99. Stephenson, S. L., and Stempen, H., 1994, Myxomycetes: A Handbook of Slime Molds, Timber Press, Inc., Portland, Oregon.Google Scholar
  100. Summons, R. E., S. C. Brassell, G. Eglinton, E. Evans, R. J. Horodyski, N. Robinson, and D. M. Ward, 1988, Distinctive hydrocarbon biomarkers from fossiliferous sediment of the Late Proterozoic Walcott Member, Chuar Group, Grand Canyon, Arizona, Geochim. Cosmochim. Acta 52: 2625–2637.CrossRefGoogle Scholar
  101. Summons, R. E., Thomas, J., Maxwell, J. R., and Boreham, C. J., 1992, Secular and environmental constraints on the occurrence of dinosterane in sediments, Geochim. Cosmochim. Acta 56: 2437–2444.CrossRefGoogle Scholar
  102. Summons, R. E., and Walter, M. R., 1990, Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments, Am. J. Sci. 290A: 212–244.Google Scholar
  103. Talyzina, N. M., Moldowan, J. M., Johannisson, A., and Fago, F. J., 2000, Affinities of Early Cambrian acritarchs studied by using microscopy, fluorescence flow cytometry and biomarkers, Rev. Palaeobot. Palynol. 108: 37–53.CrossRefGoogle Scholar
  104. Tappan, H., 1980, The Paleobiology of Plant Protists, San Francisco.Google Scholar
  105. Tappan, H., 1993, Tintinnids, in: Fossil Prokaryotes and Protists (J. H. Lipps, ed.), Blackwell Scientific Publications, Boston, pp. 285–303.Google Scholar
  106. Timofeev, B. V., 1970, Une découverte de phycomycetes dans le Précambrien, Rev. Palaeobot. Palynol., 10: 79–81.CrossRefGoogle Scholar
  107. Versteegh, G. J. M., and Blokker, P., 2004, Resistant macromolecules of extant and fossil microalgae, Phycol. Res. 52: 325–339.CrossRefGoogle Scholar
  108. Wang, D., Kumar, S., and Hedges, S., 1999, Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi, Proc. R. Soc. Lond [Biol.] 266: 163–171.CrossRefGoogle Scholar
  109. Watters, W. A., and Grotzinger, J. P., 2001, Digital reconstruction of calcified early metazoans, terminal Proterozoic Nama Group, Namibia, Paleobiology 27: 159–171.CrossRefGoogle Scholar
  110. Won, M. Z., and Below, R., 1999, Cambrian Radiolaria from the Georgina Basin, Queensland, Australia, Micropaleontology 45: 325–363.CrossRefGoogle Scholar
  111. Wood, R. A., Grotzinger, J. P., and Dickson, J. A. D., 2002, Proterozoic modular biomineralized metazoan from the Nama Group, Namibia, Science 296: 2383–2386.CrossRefGoogle Scholar
  112. Woods, K. N., Knoll, A. H., and German, T., 1998, Xanthophyte algae from the Mesoproterozoic/Neoproterozoic transition: confirmation and evolutionary implications, Geol. Soc. Amer. Abstr. Progr. 30: A232.Google Scholar
  113. Wylezich, C., Meisterfeld, R., Meisterfeld, S., and Schlegel, M., 2002, Phylogenetic analyses of small subunit ribosomal RNA coding regions reveal a monophyletic lineage of euglyphid testate amoebae (Order Euglyphida). J. Eukaryot. Microbiol. 49: 108–118.CrossRefGoogle Scholar
  114. Xiao, S., and Dong, L., 2006, On the morphological and ecological history of Proterozoic macroalgae. in: Neoproterozoic Geobiology and Paleobiology (S. Xiao and A. J. Kaufman, eds.), Springer, Dordrecht, the Netherlands, pp. 57–90.Google Scholar
  115. Xiao, S., and Knoll, A. H., 2000, Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng’an, Guizhou, South China, J. Paleontol. 74: 767–788.CrossRefGoogle Scholar
  116. Xiao, S., A.H. Knoll, and X. Yuan, 1998a, Morphological reconstruction of Miaohephyton bifurcatum, a possible brown alga from the Neoproterozoic Doushantuo Formation, South China, J. Paleontol. 72: 1072–1086.Google Scholar
  117. Xiao, S., Y. Zhang, and A.H. Knoll, 1998b, Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite, Nature 391: 553–558.CrossRefGoogle Scholar
  118. Xiao, S., Yuan, X., Steiner, M., and Knoll, A. H., 2002, Macroscopic carbonaceous compressions in a terminal Proterozoic shale: a systematic reassessment of the Miaohe biota, South China, J. Paleontol. 76: 347–376.CrossRefGoogle Scholar
  119. Xiao, S., Knoll, A. H., Yuan, X. L., and Pueschel, C. M., 2004, Phosphatized multicellular algae in the Neoproterozoic Doushantua Formation, China, and the early evolution of the florideophyte algae, Am. J. Bot. 91: 214–227.Google Scholar
  120. Yin, L., 1997, Acanthomorphic acritarchs from Meso-Neoproterozoic shales of the Ruyang Group, Shanxi, China, Rev. Palaeobot. Palynol., 98: 15–25.CrossRefGoogle Scholar
  121. Yoon, H., Hackett, J., Ciniglia, C., Pinto, G., and Bhattacharya, D., 2004, A molecular timeline for the origin of photosynthetic eukaryotes, Molec. Biol. Evol. 21: 809–818.CrossRefGoogle Scholar
  122. Yuan, X., Xiao, S., and Taylor, T. N., 2005, Lichen-like symbiosis 600 million years ago, Science 308: 1017–1020.CrossRefGoogle Scholar
  123. Zander, J. M., Caspi, E., Pandey, G. N., and Mitra, C., 1969, The presence of tetrahymanol in Oleandra wallichii, Phytochemistry 8: 2265–2267.CrossRefGoogle Scholar
  124. Zhuravlev, A. Y., 1993, Were Ediacaran Vendobionta multicellulars? Neues Jahrb. Geol. Paläontol. 190: 299–314.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Susannah M. Porter
    • 1
  1. 1.Department of Earth ScienceUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations