Salicylic Acid and Reactive Oxygen Species in the Activation of Stress Defense Genes

  • Loreto Holuigue
  • Paula Salinas
  • Francisca Blanco
  • Virginia GarretÓn


Activation of salicylic acid (SA) biosynthesis in association with changes in redox homeostasis occurs in plants exposed to diverse biotic and abiotic stresses such as pathogens infection, excess of UV radiation, or increased levels of ozone (O3). Under these conditions, reactive oxygen species (ROS) and SA are the crucial signals for triggering defense-related processes that are genetically controlled, e.g. programmed cell death (PCD) and the expression of genes that cause defense against stress. Increasing evidence in the yesteryears supports the idea that SA interplays with ROS in the genetic-controlled defense reactions. In this chapter we discuss this evidence, particularly focusing on the expression of stress defense genes. In the first section we are giving an overview about how the changes in SA levels and redox homeostasis occur in the establishment of the defense reaction against stressful conditions. In the second section we will review the information obtained from genetic and biochemical approaches about signaling proteins and promoter DNA elements, involved in the activation of defense genes by SA. Redox controlled transcriptional co-regulators, transcription factors and promoter DNA elements have been shown to mediate SA induced activation of these genes. In the third section we are going to analyze available transcriptome data obtained from Arabidopsis plants, either treated with SA or analogs or subjected to stress conditions. We have classified the up-regulated genes according to their known or putative functions. Interestingly, we found genes coding for proteins with antioxidant and detoxifying functions, together with other defense-related functions. Taking together, these evidences suggest that SA plays a role in controlling the cellular redox balance at the onset of the defense response.

Key words

Salicylic acid ROS stress defense genes TGA NPR1 microarrays as-1 signal transduction pathway 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A.-H.-Mackerness, S., John, C.F., Jordan, B., and Thomas, B. 2001. Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett., 489: 237-242.CrossRefGoogle Scholar
  2. Alvarez, M.E., Pennell, R.I., Meijer, P.J., Ishikawa, A., Dixon, R.A., and Lamb, C. 1998. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell, 92: 773-784.PubMedCrossRefGoogle Scholar
  3. Andreasson, E., Jenkins, T., Brodersen, P., Thorgrimsen, S., Petersen, N.H., Zhu, S., Qiu, J.L., Micheelsen, P., Rocher, A., Petersen, M., Newman, M.A., Bjorn Nielsen, H., Hirt, H., Somssich, I., Mattsson, O., and Mundy, J. 2005. The MAP kinase substrate MKS1 is a regulator of plant defense responses. Embo J., 24: 2579-2589.PubMedCrossRefGoogle Scholar
  4. Apel, K., and Hirt, H. 2004. Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol., 55: 373-399.PubMedCrossRefGoogle Scholar
  5. Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.-L., Gomez-Gomez, L., Boller, T., Ausubel, F.M., and Sheen, J. 2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 415: 977-983.PubMedCrossRefGoogle Scholar
  6. Benfey, P.N., Ren, L., and Chua, N.H. 1990. Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. Embo J., 9: 1677-1684.PubMedGoogle Scholar
  7. Bi, Y.M., Kenton, P., Mur, L., Darby, R., and Draper, J. 1995. Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant J., 8: 235-245.PubMedCrossRefGoogle Scholar
  8. Blanco, F., Garreton, V., Frey, N., Dominguez, C., Perez-acle, T., Van Der Straeten, D., Jordana, X., and Holuigue, L. 2005. Identification of NPR1-dependent and independent genes early induced by salicylic acid treatment in Arabidopsis. Plant Mol. Biol., 59: 929-946.CrossRefGoogle Scholar
  9. Borsani, O., Valpuesta, V., and Botella, M.A. 2001. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol., 126: 1024-1030.PubMedCrossRefGoogle Scholar
  10. Broin, M., Cuine, S., Eymery, F., and Rey, P. 2002. The Plastidic 2-Cysteine Peroxiredoxin Is a Target for a Thioredoxin Involved in the Protection of the Photosynthetic Apparatus against Oxidative Damage. Plant Cell, 14: 1417-1432.PubMedCrossRefGoogle Scholar
  11. Buchanan, B.B., and Balmer, Y. 2005. Redox Regulation: A Broadening Horizon. Annu. Rev. Plant Biol., 56: 187-220.PubMedCrossRefGoogle Scholar
  12. Cao, H., Bowling, S.A., Gordon, A.S., and Dong, X. 1994. Characterization of an Arabidopsis Mutant That Is Nonresponsive to Inducers of Systemic Acquired Resistance. Plant Cell, 6: 1583-1592.PubMedCrossRefGoogle Scholar
  13. Cao, H., Glazebrook, J., Clarke, J.D., Volko, S., and Dong, X. 1997. The Arabidopsis NPR1 Gene That Controls Systemic Acquired Resistance Encodes a Novel Protein Containing Ankyrin Repeats. Cell, 88: 57-63.PubMedCrossRefGoogle Scholar
  14. Cao, H., Li, X., and Dong, X. 1998. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc. Natl. Acad. Sci. USA. 95: 6531-6536.PubMedCrossRefGoogle Scholar
  15. Chamnongpol, S., Willekens, H., Moeder, W., Langebartels, C., Sandermann, H., Jr., Van Montagu, M., Inze, D., and Van Camp, W. 1998. Defense activation and enhanced pathogen tolerance induced by H$2$O$2$ in transgenic tobacco. Proc. Natl. Acad. Sci. USA. 95: 5818-5823.PubMedCrossRefGoogle Scholar
  16. Chapple, C. 1998. Molecular-genetic analysis of plant cytochrome P450-dependet monooxigenases. Annu. Rev.Plant Physiol. Plant Mol. Biol., 49: 311-343.PubMedCrossRefGoogle Scholar
  17. Chen, C., and Chen, Z. 2002. Potentiation of Developmentally Regulated Plant Defense Response by AtWRKY18, a Pathogen-Induced Arabidopsis Transcription Factor. Plant Physiol., 129: 706-716.PubMedCrossRefGoogle Scholar
  18. Chen, W., and Singh, K.B. 1999. The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. Plant J., 19: 667-677.PubMedCrossRefGoogle Scholar
  19. Chen, Z., Silva, H., and Klessig, D. 1993. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science, 262: 1883-1886.PubMedCrossRefGoogle Scholar
  20. Cheong, Y.H., Chang, H.-S., Gupta, R., Wang, X., Zhu, T., and Luan, S. 2002. Transcriptional Profiling Reveals Novel Interactions between Wounding, Pathogen, Abiotic Stress, and Hormonal Responses in Arabidopsis. Plant Physiol., 129: 661-677.PubMedCrossRefGoogle Scholar
  21. Chern, M., Fitzgerald, H.A., Canlas, P.E., Navarre, D.A., and Ronald, P.C. 2005. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant Microbe Interact., 18: 511-520.PubMedCrossRefGoogle Scholar
  22. Chung, Y.M., Bae, Y.S., and Lee, S.Y. 2003. Molecular ordering of ROS production, mitochondrial changes, and caspase activation during sodium salicylate-induced apoptosis. Free Rad. Biol. Med., 34: 434-442.PubMedCrossRefGoogle Scholar
  23. Clarke, S.M., Mur, L.A.J., Wood, J.E., and Scott, I.M. 2004. Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J., 38: 432-447.PubMedCrossRefGoogle Scholar
  24. Collinge, M.A., and Walker, J.C. 1994. Isolation of an Arabidopsis thaliana casein kinase II beta subunit by complementation in Saccharomyces cerevisiae. Plant Mol. Biol., 25: 649-658.PubMedCrossRefGoogle Scholar
  25. Dangl, J.L., and Jones, J.D.G. 2001. Plant pathogens and integrated defence responses to infection. Nature, 411: 826-833.PubMedCrossRefGoogle Scholar
  26. Daniel, X., Lacomme, C., Morel, J.-B., and Roby, D. 1999. A novel myb oncogene homologue in Arabidopsis thaliana related to hypersensitive cell death. Plant J., 20: 57-66.PubMedCrossRefGoogle Scholar
  27. Dat, J.F., Foyer, C.H., and Scott, I.M. 1998. Changes in Salicylic Acid and Antioxidants during Induced Thermotolerance in Mustard Seedlings. Plant Physiol., 118: 1455-1461.CrossRefPubMedGoogle Scholar
  28. Davletova, S., Rizhsky, L., Liang, H., Shengqiang, Z., Oliver, D.J., Coutu, J., Shulaev, V., Schlauch, K., and Mittler, R. 2005. Cytosolic Ascorbate Peroxidase 1 Is a Central Component of the Reactive Oxygen Gene Network of Arabidopsis. Plant Cell, 17: 268-281.PubMedCrossRefGoogle Scholar
  29. de Leon, I.P., Sanz, A., Hamberg, M., and Castresana, C. 2002. Involvement of the Arabidopsis $α $DOX1 fatty acid dioxygenase in protection against oxidative stress and cell death. Plant J., 29: 61-72.PubMedCrossRefGoogle Scholar
  30. Delaney, T.P., Friedrich, L., and Ryals, J.A. 1995. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc. Natl. Acad. Sci. USA. 92: 6602-6606.PubMedCrossRefGoogle Scholar
  31. Delaney, T.P., Uknes, S., Vernooij, B., Friedrich, L., and Weymann, K. 1994. A central role of salicylic acid in plant disease resistance. Science, 266: 1247-1250.CrossRefPubMedGoogle Scholar
  32. Despres, C., Chubak, C., Rochon, A., Clark, R., Bethune, T., Desveaux, D., and Fobert, P.R. 2003. The Arabidopsis NPR1 Disease Resistance Protein Is a Novel Cofactor That Confers Redox Regulation of DNA Binding Activity to the Basic Domain/Leucine Zipper Transcription Factor TGA1. Plant Cell, 15: 2181-2191.PubMedCrossRefGoogle Scholar
  33. Despres, C., DeLong, C., Glaze, S., Liu, E., and Fobert, P.R. 2000. The Arabidopsis NPR1/NIM1 Protein Enhances the DNA Binding Activity of a Subgroup of the TGA Family of bZIP Transcription Factors. Plant Cell, 12: 279-290.PubMedCrossRefGoogle Scholar
  34. Desveaux, D., Allard, J., Brisson, N., and Sygusch, J. 2002. Crystallization and preliminary X-ray crystallographic analysis of p24, a component of the potato nuclear factor PBF-2. Acta Cryst. D Biol Cryst., 58: 296-298.CrossRefGoogle Scholar
  35. Desveaux, D., Despres, C., Joyeux, A., Subramaniam, R., and Brisson, N. 2000. PBF-2 is a novel single-stranded DNA binding factor implicated in PR-10a gene activation in potato. Plant Cell, 12: 1477-1489.PubMedCrossRefGoogle Scholar
  36. Desveaux, D., Marechal, A., and Brisson, N. 2005. Whirly transcription factors: defense gene regulation and beyond. Tren. Plant Sci., 10: 95-102.CrossRefGoogle Scholar
  37. Desveaux, D., Subramaniam, R., Despres, C., Mess, J.-N., Levesque, C., Fobert, P.R., Dangl, J.L., and Brisson, N. 2004. A "Whirly" Transcription Factor Is Required for Salicylic Acid-Dependent Disease Resistance in Arabidopsis. Dev. Cell, 6: 229-240.PubMedCrossRefGoogle Scholar
  38. Dietz, K.-J. 2003. Plant Peroxiredoxins. Annu. Rev. Plant Biol., 54: 93-107.PubMedCrossRefGoogle Scholar
  39. Dixon, D.P., Lapthorn, A., and Edwards, R. 2002. Plant glutathione transferases. Genome Biol, 3: REVIEWS3004.PubMedCrossRefGoogle Scholar
  40. Dong, J., Chen, C., and Chen, Z. 2003. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol. Biol., 51: 21-37.PubMedCrossRefGoogle Scholar
  41. Dong, X. 2004. NPR1, all things considered. Curr. Opin. Plant Biol., 7: 547-552.PubMedCrossRefGoogle Scholar
  42. Draper, J. 1997. Salicylate, superoxide synthesis and cell suicide in plant defence. Tren. Plant Sci., 2: 162-165.CrossRefGoogle Scholar
  43. Durner, J., and Klessig, D.F. 1996. Salicylic Acid Is a Modulator of Tobacco and Mammalian Catalases. J. Biol. Chem., 271: 28492-28501.PubMedCrossRefGoogle Scholar
  44. Durrant, W.E., and Dong, X. 2004. Systemic Acquired Resistance. Annu. Rev. Phytopath., 42: 185-209.CrossRefGoogle Scholar
  45. Dutilleul, C., Garmier, M., Noctor, G., Mathieu, C., Chetrit, P., Foyer, C.H., and de Paepe, R. 2003. Leaf Mitochondria Modulate Whole Cell Redox Homeostasis, Set Antioxidant Capacity, and Determine Stress Resistance through Altered Signaling and Diurnal Regulation. Plant Cell, 15: 1212-1226.PubMedCrossRefGoogle Scholar
  46. Edwards, R., Dixon, D.P., and Walbot, V. 2000. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Tren. Plant Sci., 5: 193-198.CrossRefGoogle Scholar
  47. Ekengren, S.K., Liu, Y., Schiff, M., Dinesh-Kumar, S.P., and Martin, G.B. 2003. Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J., 36: 905-917.PubMedCrossRefGoogle Scholar
  48. Eulgem, T. 2005. Regulation of the Arabidopsis defense transcriptome. Tren.Plant Sci., 10: 71-78.CrossRefGoogle Scholar
  49. Eulgem, T., Rushton, P.J., Robatzek, S., and Somssich, I.E. 2000. The WRKY superfamily of plant transcription factors. Tren Plant Sci., 5: 199-206.CrossRefGoogle Scholar
  50. Falk, A., Feys, B.J., Frost, L.N., Jones, J.D., Daniels, M.J., and Parker, J.E. 1999. EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc. Natl. Acad. Sci. USA. 96: 3292-3297.PubMedCrossRefGoogle Scholar
  51. Fan, W., and Dong, X. 2002. In Vivo Interaction between NPR1 and Transcription Factor TGA2 Leads to Salicylic Acid-Mediated Gene Activation in Arabidopsis. Plant Cell, 14: 1377-1389.PubMedCrossRefGoogle Scholar
  52. Feys, B.J., Moisan, L.J., Newman, M.A., and Parker, J.E. 2001. Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. Embo J., 20: 5400-5411.PubMedCrossRefGoogle Scholar
  53. Finkemeier, I., Goodman, M., Lamkemeyer, P., Kandlbinder, A., Sweetlove, L.J., and Dietz, K.-J. 2005. The Mitochondrial Type II Peroxiredoxin F Is Essential for Redox Homeostasis and Root Growth of Arabidopsis thaliana under Stress. J. Biol. Chem., 280: 12168-12180.PubMedCrossRefGoogle Scholar
  54. Fitzgerald, H.A., Canlas, P.E., Chern, M.S., and Ronald, P.C. 2005. Alteration of TGA factor activity in rice results in enhanced tolerance to Xanthomonas oryzae pv. oryzae. Plant J., 43: 335-347.PubMedCrossRefGoogle Scholar
  55. Fobert, P.R., and Despres, C. 2005. Redox control of systemic acquired resistance. Curr. Opin. Plant Biol., 8: 378-382.PubMedCrossRefGoogle Scholar
  56. Foley, R.C., and Singh, K.B. 2004. TGA5 acts as a positive and TGA4 acts as a negative regulator of ocs element activity in Arabidopsis roots in response to defence signals. FEBS Lett., 563: 141-145.PubMedCrossRefGoogle Scholar
  57. Foyer, C.H., and Noctor, G. 2005. Redox Homeostasis and Antioxidant Signaling: A Metabolic Interface between Stress Perception and Physiological Responses. Plant Cell, 17: 1866-1875.PubMedCrossRefGoogle Scholar
  58. Friedrich, L., Lawton, K., Dietrich, R., Willits, M., Cade, R., and Ryals, J. 2001. NIM1 overexpression in Arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Mol Plant Micro. Int., 14: 1114-1124.CrossRefGoogle Scholar
  59. Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., and Ryals, J. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 250: 754-756.CrossRefGoogle Scholar
  60. Garreton, V., Carpinelli, J., Jordana, X., and Holuigue, L. 2002. The as-1 Promoter Element Is an Oxidative Stress-Responsive Element and Salicylic Acid Activates It via Oxidative Species. Plant Physiol., 130: 1516-1526.PubMedCrossRefGoogle Scholar
  61. Glazebrook, J. 2001. Genes controlling expression of defense responses in Arabidopsis – 2001 status. Curr. Opin.Plant Biol., 4: 301-308.PubMedCrossRefGoogle Scholar
  62. Glazebrook, J. 2005. Contrasting Mechanisms of Defense Against Biotrophic and Necrotrophic Pathogens. Annu. Rev. Phytopath., 43: 9.1-9.13.Google Scholar
  63. Glazebrook, J., Chen, W., Estes, B., Chang, H.-S., Nawrath, C., Metraux, J.-P., Zhu, T., and Katagiri, F. 2003. Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J., 34: 217-228.PubMedCrossRefGoogle Scholar
  64. Glazebrook, J., Rogers, E.E., and Ausubel, F.M. 1996. Isolation of Arabidopsis Mutants With Enhanced Disease Susceptibility by Direct Screening. Genetics, 143: 973-982.PubMedGoogle Scholar
  65. Grant, J.J., and Loake, G.J. 2000. Role of Reactive Oxygen Intermediates and Cognate Redox Signaling in Disease Resistance. Plant Physiol., 124: 21-30.PubMedCrossRefGoogle Scholar
  66. Hartmann, U., Sagasser, M., Mehrtens, F., Stracke, R., and Weisshaar, B. 2005. Differential combinatorial interactions of cis}-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mole. Biol., 57: 155-171.CrossRefGoogle Scholar
  67. Hepworth, S.R., Zhang, Y., McKim, S., Li, X.,, and Haughn, G.W. 2005. BLADE-ON-PETIOLE-Dependent Signaling Controls Leaf and Floral Patterning in Arabidopsis. Plant Cell, 17: 1434-1448.PubMedCrossRefGoogle Scholar
  68. Hidalgo, P., Garreton, V., Berrios, C.G., Ojeda, H., Jordana, X., and Holuigue, L. 2001. A Nuclear Casein Kinase 2 Activity Is Involved in Early Events of Transcriptional Activation Induced by Salicylic Acid in Tobacco. Plant Physiol., 125: 396-405.PubMedCrossRefGoogle Scholar
  69. Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y., and Matsui, H. 2001. A Large Family of Class III Plant Peroxidases. Plant Cell Physiol., 42: 462-468.PubMedCrossRefGoogle Scholar
  70. Hoffmann-Sommergruber, K. 2002. Pathogenesis-related (PR)-proteins identified as allergens. Biochem. Soc. Trans., 30: 930-935.PubMedCrossRefGoogle Scholar
  71. Hong, Z., Zhang, Z, Olson, J., and Verma D. 2001. A Novel UDP-Glucose Transferase Is Part of the Callose Synthase Complex and Interacts with Phragmoplastin at the Forming Cell Plate. Plant Cell, 13: 769-779.PubMedCrossRefGoogle Scholar
  72. Horvath, D.M., Huang, D.J., and Chua, N.H. 1998. Four classes of salicylate-induced tobacco genes. Mol Plant Micro. Inter., 11: 895-905.CrossRefGoogle Scholar
  73. Ichimura, K. 2000. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J., 24: 655-665.PubMedCrossRefGoogle Scholar
  74. Jabs, T., Dietrich, R.A., and Dangl, J.L. 1996. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science, 273: 1853-1856.PubMedCrossRefGoogle Scholar
  75. Jackson, R.G., Lim, E.-K., Li, Y., Kowalczyk, M., Sandberg, G., Hoggett, J., Ashford, D.A., and Bowles, D.J. 2001. Identification and Biochemical Characterization of an Arabidopsis Indole-3-acetic Acid Glucosyltransferase. J. Biol. Chem., 276: 4350-4356.PubMedCrossRefGoogle Scholar
  76. Jacquot, J.-P., Gelhaye, E., Rouhier, N., Corbier, C., Didierjean, C., and Aubry, A. 2002. Thioredoxins and related proteins in photosynthetic organisms: molecular basis for thiol dependent regulation. Biochem. Pharm., 64: 1065-1069.PubMedCrossRefGoogle Scholar
  77. Jakoby, M., Weisshaar, B., Droge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T., and Parcy, F. 2002. bZIP transcription factors in Arabidopsis. Tren. Plant Scie., 7: 106-111.CrossRefGoogle Scholar
  78. Jin, H., Cominelli, E., Bailey, P., Parr, A., Mehrtens, F., Jones, J., Tonelli, C., Weisshaar, B., and Martin, C. 2000. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J., 19: 6150-6161.PubMedCrossRefGoogle Scholar
  79. Jirage, D., Tootle, T.L., Reuber, T.L., Frost, L.N., Feys, B.J., Parker, J.E., Ausubel, F.M., and Glazebrook, J. 1999. Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc. Natl. Acad. Sci. USA. 96: 13583-13588.PubMedCrossRefGoogle Scholar
  80. Jirage, D., Zhou, N., Cooper, B., Clarke, J.D., Dong, X., and Glazebrook, J. 2001. Constitutive salicylic acid-dependent signaling in cpr1 and cpr6 mutants requires PAD4. Plant J., 26: 395-407.PubMedCrossRefGoogle Scholar
  81. Johnson, C., Boden, E., and Arias, J. 2003. Salicylic Acid and NPR1 Induce the Recruitment of trans-Activating TGA Factors to a Defense Gene Promoter in Arabidopsis. Plant Cell, 15: 1846-1858.PubMedCrossRefGoogle Scholar
  82. Johnson, C., Boden, E., Desai, M., Pascuzzi, P., and Arias, J. 2001. In vivo target promoter-binding activities of a xenobiotic stress-activated TGA factor. Plant J., 28: 237-243.PubMedCrossRefGoogle Scholar
  83. Joo, J.H., Wang, S., Chen, J.G., Jones, A.M., and Fedoroff, N.V. 2005. Different Signaling and Cell Death Roles of Heterotrimeric G Protein {α} and {β} Subunits in the Arabidopsis Oxidative Stress Response to Ozone. Plant Cell, 17: 957-970.PubMedCrossRefGoogle Scholar
  84. Kalde, M., Barth, M., Somssich, I., and Lippok, B. 2003. Members of the Arabidopsis WRKY group III transcription factors are part of different plant defense signaling pathways. Mole. Plant Micro. Inter., 16: 295-305.CrossRefGoogle Scholar
  85. Kampranis, S., Damianova, R., Atallah, M., Toby, G., Kondi, G., Tsichlis, P.N., and Makris, A.M., 2000. A Novel Plant Glutathione S-Transferase/Peroxidase Suppresses Bax Lethality in Yeast. J. Biol.Chem., 275: 29207-29216.PubMedCrossRefGoogle Scholar
  86. Kang, H.-G., and Klessig, D.F. 2005. Salicylic acid-inducible Arabidopsis} CK2-like activity phosphorylates TGA2. Plant Mole. Biol., 57: 541-557.CrossRefGoogle Scholar
  87. Katagiri, F., Lam, E., and Chua, N.-H. 1989. Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature, 340: 727-730.PubMedCrossRefGoogle Scholar
  88. Katagiri, F., Seipel, K., and Chua, N.H. 1992. Identification of a novel dimer stabilization region in a plant bZIP transcription activator. Mol. Cell. Biol., 12: 4809-4816.PubMedGoogle Scholar
  89. Kawano, T. 2003. Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep., 21: 829-837.PubMedGoogle Scholar
  90. Kawano, T., Pinontoan, R., Uozumi, N., Morimitsu, Y., Miyake, C., Asada, K., and Muto, S. 2000. Phenylethylamine-Induced Generation of Reactive Oxygen Species and Ascorbate Free Radicals in Tobacco Suspension Culture: Mechanism for Oxidative Burst Mediating Ca2+ Influx. Plant Cell Physiol., 41: 1259-1266.PubMedCrossRefGoogle Scholar
  91. Keegstra, K., and Raikhel, N. 2001 Plant glycosyltransferases. Curr. Opin. Plant Biol}., 4: 219-224.PubMedCrossRefGoogle Scholar
  92. Kegler, C., Lenk, I., Krawczyk, S., Scholz, R., and Gatz, C. 2004. Functional characterization of tobacco transcription factor TGA2.1. Plant Mol. Biol., 55: 153-164PubMedCrossRefGoogle Scholar
  93. Kilili, K.G., Atanassova, N., Vardanyan, A., Clatot, N., Al-Sabarna, K., Kanellopoulos, P.N., Makris, A.M., and Kampranis, S.C. 2004. Differential Roles of Tau Class Glutathione S-Transferases in Oxidative Stress. J. Biol. Chem.., 279: 24540-24551.PubMedCrossRefGoogle Scholar
  94. Kim, H.S., and Delaney, T.P. 2002. Over-expression of TGA5, which encodes a bZIP transcription factor that interacts with NIM1/NPR1, confers SAR-independent resistance in Arabidopsis thaliana to Peronospora parasitica. Plant J., 32: 151-163.PubMedCrossRefGoogle Scholar
  95. Kinkema, M., Fan, W., and Dong, X. 2000. Nuclear Localization of NPR1 Is Required for Activation of PR Gene Expression. Plant Cell, 12: 2339-2350.PubMedCrossRefGoogle Scholar
  96. Klessig, D.F., Durner, J., Noad, R., Navarre, D.A., Wendehenne, D., Kumar, D., Zhou, J.M., Shah, J., Zhang, S., Kachroo, P., Trifa, Y., Pontier, D., Lam, E., and Silva, H. 2000. Nitric oxide and salicylic acid signaling in plant defense. Proc. Natl. Acad. Sci. USA. 97: 8849-8855.PubMedCrossRefGoogle Scholar
  97. Klinedinst, S., Pascuzzi, P., Redman, J., Desai, M., and Arias, J. 2000. A xenobiotic-stress-activated transcription factor and its cognate target genes are preferentially expressed in root tip meristems. Plant Mol. Biol., 42: 679-688.PubMedCrossRefGoogle Scholar
  98. Krawczyk, S., Thurow, C., Niggeweg, R., and Gatz, C. 2002. Analysis of the spacing between the two palindromes of activation sequence-1 with respect to binding to different TGA factors and transcriptional activation potential. Nucl. Acids Res., 30: 775-781.PubMedCrossRefGoogle Scholar
  99. Kreps, J.A., Wu, Y., Chang, H.-S., Zhu, T., Wang, X., and Harper, J.F. 2002. Transcriptome Changes for Arabidopsis in Response to Salt, Osmotic, and Cold Stress. Plant Physiol., 130: 2129-2141.PubMedCrossRefGoogle Scholar
  100. Lam, E., Benfey, P.N., Gilmartin, P.M., Fang, R.X., and Chua, N.H. 1989. Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proc. Natl. Acad. Sci. USA. 86: 7890-7894.PubMedCrossRefGoogle Scholar
  101. Lam, E., Kato, N., and Lawton, M. 2001. Programmed cell death, mitochondria and the plant hypersensitive response. Nature, 411: 848-853.PubMedCrossRefGoogle Scholar
  102. Lam, E., and Lam, Y. 1995. Binding site requirements and differential representation of TGF factors in nuclear ASF-1 activity. Nucl. Acids Res., 23: 3778-3785.PubMedCrossRefGoogle Scholar
  103. Larkindale, J., and Knight, M. 2002. Protection against Heat Stress-Induced Oxidative Damage in Arabidopsis Involves Calcium, Abscisic Acid, Ethylene, and Salicylic Acid. Plant Physiol., 128: 682-695.PubMedCrossRefGoogle Scholar
  104. Lebel, E., Heifetz, P., Thorne, L., Uknes, S., Ryals, J., and Ward, E. 1998. Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J., 16: 223-233.PubMedCrossRefGoogle Scholar
  105. Lee, H.-i.,, and Raskin, I. 1999. Purification, Cloning, and Expression of a Pathogen Inducible UDP-glucose:Salicylic Acid Glucosyltransferase from Tobacco. J. Biol. Chem., 274: 36637-36642.PubMedCrossRefGoogle Scholar
  106. Lee, K.-t., Hirano, H., Yamakawa, T., Kodama, T., Igarashi, Y.,, and Shimomura, K. 2001a. Responses of transformed root culture of Atropa belladonna to salicylic acid stress. J. Biosci. Bioeng., 91: 586-589.CrossRefGoogle Scholar
  107. Lee, M., Qi, M., and Yang, Y. 2001b. A novel jasmonic acid-inducible rice myb gene associates with fungal infection and host cell death. Mol Plant Micro. Inter., 14: 527-535.CrossRefGoogle Scholar
  108. Lemaire, S.D., Guillon, B., Le Marechal, P., Keryer, E., Miginiac-Maslow, M., and Decottignies, P. 2004. New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA. 101: 7475-7480.PubMedCrossRefGoogle Scholar
  109. Leon, J., Lawton, M.A., and Raskin, I. 1995. Hydrogen Peroxide Stimulates Salicylic Acid Biosynthesis in Tobacco. Plant Physiol., 108: 1673-1678.PubMedGoogle Scholar
  110. Li, J., and al, e. 2004. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell, 16: 319-331.PubMedCrossRefGoogle Scholar
  111. Li, X., Zhang, Y., Clarke, J.D., Li, Y., and Dong, X. 1999. Identification and cloning of a negative regulator of systemic acquired resistance, SNI1, through a screen for suppressors of npr1-1. Cell, 98: 329-339.PubMedCrossRefGoogle Scholar
  112. Li, Y., Baldauf, S., Lim, E.K., and Bowles, D.J. 2001. Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. J Biol. Chem., 276: 4338-4343.PubMedCrossRefGoogle Scholar
  113. Lin, W.-C., Lu, C.-F., Wu, J.-W., Cheng, M.-L., Lin, Y.-M., Yang, N.-S., Black, L., Green, S.K., Wang, J.-F., and Cheng, C.-P. 2004. Transgenic tomato plants expressing the Arabidopsis NPR1}gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Trans. Res., 13: 567-581.CrossRefGoogle Scholar
  114. Liu, G., Holub, E.B., Alonso, J.M., Ecker, J.R., and Fobert, P.R. 2005. An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance. Plant J., 41: 304-318.PubMedCrossRefGoogle Scholar
  115. Liu, X., and Lam, E. 1994. Two binding sites for the plant transcription factor ASF-1 can respond to auxin treatments in transgenic tobacco. J. Biol. Chem., 269: 668-675.PubMedGoogle Scholar
  116. Liu, Y., Schiff, M., Marathe, R., and Dinesh-Kumar, S.P. 2002. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J., 30: 415-429.PubMedCrossRefGoogle Scholar
  117. Loyall, L., Uchida, K., Braun, S., Furuya, M., and Frohnmeyer, H. 2000. Glutathione and a UV Light-Induced Glutathione S-Transferase Are Involved in Signaling to Chalcone Synthase in Cell Cultures. Plant Cell, 12: 1939-1950.PubMedCrossRefGoogle Scholar
  118. Malamy, J., Carr, J.P., Klessig, D.F., and Raskin, I. 1990. Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science, 250: 1002-1004.CrossRefPubMedGoogle Scholar
  119. Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K.A., Dangl, J.L., and Dietrich, R.A. 2000. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat. Genet., 26: 403-410.PubMedCrossRefGoogle Scholar
  120. Marchand, C., Le Marechal, P., Meyer, Y., Miginiac-Maslow, M., Issakidis-Bourguet, E., and Decottignies, P. 2004. New targets of Arabidopsis thioredoxins revealed by proteomic analysis. Proteomics, 4: 2696-2706.PubMedCrossRefGoogle Scholar
  121. Marrs, K.A. 1996. The Functions and Regulation of Glutathione S-transferases in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 47: 127-158.PubMedCrossRefGoogle Scholar
  122. Mateo, A., Muhlenbock, P., Rusterucci, C., Chang, C.C., Miszalski, Z., Karpinska, B., Parker, J.E., Mullineaux, P.M., and Karpinski, S. 2004. Lesion Simulating Disease 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol., 136: 2818-2830.PubMedCrossRefGoogle Scholar
  123. Maxwell, D.P., Nickels, R., and McIntosh, L. 2002. Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence. Plant J., 29: 269-279.PubMedCrossRefGoogle Scholar
  124. Maxwell, D.P., Wang, Y., and McIntosh, L. 1999. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc. Natl. Acad. Sci. USA. 96: 8271-8276.PubMedCrossRefGoogle Scholar
  125. Mehrtens, F., Kranz, H., Bednarek, P., and Weisshaar, B. 2005. The Arabidopsis Transcription Factor MYB12 Is a Flavonol-Specific Regulator of Phenylpropanoid Biosynthesis. Plant Physiol., 138: 1083-1096.PubMedCrossRefGoogle Scholar
  126. Metraux, J.-P. 2002. Recent breakthroughs in the study of salicylic acid biosynthesis. Tren.Plant Sci., 7: 332-334.CrossRefGoogle Scholar
  127. Miao, Z., Liu, X., and Lam, E. 1994. TGA3 is a distinct member of the TGA family of bZIP transcription factors in Arabidopsis thaliana. Plant Mo. Biol., 25: 1-11.CrossRefGoogle Scholar
  128. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Tren. Plant Sci., 7: 405-410.CrossRefGoogle Scholar
  129. Morris, K., -Mackerness, S.A.-H., Page, T., John, C.F., Murphy, A.M., Carr, J.P., and Buchanan-Wollaston, V. 2000. Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J., 23: 677-685.PubMedCrossRefGoogle Scholar
  130. Mou, Z., Fan, W., and Dong, X. 2003. Inducers of Plant Systemic Acquired Resistance Regulate NPR1 Function through Redox Changes. Cell, 113: 935-944.PubMedCrossRefGoogle Scholar
  131. Mur, L.A., Kenton, P., and Draper, J. 2005. In planta} measurements of oxidative bursts elicited by avirulent and virulent bacterial pathogens suggestes that H$2$O$2$ is insufficient to elicit cell death in tobacco. Plant Cell Environ., 28: 548-561.CrossRefGoogle Scholar
  132. Narusaka, Y., Narusaka, M., Seki, M., Umezawa, T., Ishida, J., Nakajima, M., Enju, A., and Shinozaki, K. 2004. Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis Analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Mol. Biol., 55: 327-342.PubMedCrossRefGoogle Scholar
  133. Nawrath, C., Heck, S., Parinthawong, N., and Metraux, J.-P. 2002. EDS5, an Essential Component of Salicylic Acid-Dependent Signaling for Disease Resistance in Arabidopsis, Is a Member of the MATE Transporter Family. Plant Cell, 14: 275-286.PubMedCrossRefGoogle Scholar
  134. Neuenschwander, U., Vernooij, B., Friedrich, L., Uknes, S., Kessmann, H., and Ryals, J. 1995. Is hidrogen peroxide a second messenger of salicylic acid in systemic acquired resistance? Plant J., 8: 227-233.CrossRefGoogle Scholar
  135. Neuhaus, G., Neuhaus-Url, G., Katagiri, F., Seipel, K., and Chua, N.H. 1994. Tissue-Specific Expression of as-1 in Transgenic Tobacco. Plant Cell, 6: 827-834.PubMedCrossRefGoogle Scholar
  136. Niefind, K., Guerra, B., Pinna, L., Issinger, O., and Schomburg, D. 1998. Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 Å resolution. EMBO J., 17: 2451-2462.PubMedCrossRefGoogle Scholar
  137. Niggeweg, R., Thurow, C., Kegler, C., and Gatz, C. 2000a. Tobacco Transcription Factor TGA2.2 Is the Main Component of as-1-binding Factor ASF-1 and Is Involved in Salicylic Acid- and Auxin-inducible Expression of as-1-containing Target Promoters. J. Biol. Chem., 275: 19897-19905.CrossRefGoogle Scholar
  138. Niggeweg, R., Thurow, C., Weigel, R., Pfitzner, U., and Gatz, C. 2000b. Tobacco TGA factors differ with respect to interaction with NPR1, activation potential and DNA-binding properties. Plant Mol. Biol., 42: 775-788.CrossRefGoogle Scholar
  139. O’Donnell, P.J., Truesdale, Mark R., Calvert, Caroline M., Dorans, Alison, Roberts, Michael R., and Bowles, D. J. 1998. A novel tomato gene that rapidly responds to wound and pathogenrelated signals. Plant J., 14: 137-142.PubMedCrossRefGoogle Scholar
  140. Orozco-Cardenas, M.L., Narvaez-Vasquez, J., and Ryan, C.A. 2001. Hydrogen Peroxide Acts as a Second Messenger for the Induction of Defense Genes in Tomato Plants in Response to Wounding, Systemin, and Methyl Jasmonate. Plant Cell, 13: 179-191.PubMedCrossRefGoogle Scholar
  141. Overmyer, K., Brosche, M., and Kangasjarvi, J. 2003. Reactive oxygen species and hormonal control of cell death. Tren. Plant Sci., 8: 335-342.CrossRefGoogle Scholar
  142. Pascuzzi, P., Hamilton, D., Bodily, K., and Arias, J. 1998. Auxin-induced stress potentiates trans-activation by a conserved plant basic/leucine-zipper factor. J. Biol. Chem., 273: 26631-26637.PubMedCrossRefGoogle Scholar
  143. Pasqualini, S., Della Torre, G., Ferranti, F., Ederli, L., Piccioni, C., Reale, L., and Antonielli, M. 2002. Salicylic acid modulates ozone-induced hypersensitive cell death in tobacco plants. Physiol. Plant., 115: 204-212.PubMedCrossRefGoogle Scholar
  144. Pasqualini, S., Piccioni, C., Reale, L., Ederli, L., Della Torre, G., and Ferranti, F. 2003. Ozone-Induced Cell Death in Tobacco Cultivar Bel W3 Plants. The Role of Programmed Cell Death in Lesion Formation. Plant Physiol., 133: 1122-1134.PubMedCrossRefGoogle Scholar
  145. Peracchia, G., Jensen, A.B., Culianez-Macia, F.A., Grosset, J., Goday, A., Issinger, O.-G., and Pages, M. 1999. Characterization, subcellular localization and nuclear targeting of casein kinase 2 from Zea mays. Plant Mol. Biol., 40: 199-211.PubMedCrossRefGoogle Scholar
  146. Petersen, M., Mundy, J., and otros. 2000. Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell, 103: 1111-1120.PubMedCrossRefGoogle Scholar
  147. Pieterse, C.M., and Van Loon, L. 2004. NPR1: the spider in the web of induced resistance signaling pathways. Curr. Opin. Plant Biol., 7: 456-464.PubMedCrossRefGoogle Scholar
  148. Pieterse, C.M., van Wees, S.C., van Pelt, J.A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P.J., and van Loon, L.C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell, 10: 1571-1580.PubMedCrossRefGoogle Scholar
  149. Pontier, D., Miao, Z.H., and Lam, E. 2001. Trans-dominant suppression of plant TGA factors reveals their negative and positive roles in plant defense responses. Plant J., 27: 529-538.PubMedCrossRefGoogle Scholar
  150. Pontier, D., Privat, I., Trifa, Y., Zhou, J.M., Klessig, D.F., and Lam, E. 2002. Differential regulation of TGA transcription factors by post-transcriptional control. Plant J., 32: 641-653.PubMedCrossRefGoogle Scholar
  151. Pylatuik, J., and Fobert, P.R. 2005. Comparison of transcript profiling on Arabidopsis microarray platform technologies. Plant Mol. Biol., 58: 609-624.PubMedCrossRefGoogle Scholar
  152. Qin, X.F., Holuigue, L., Horvath, D.M., and Chua, N.H. 1994. Immediate Early Transcription Activation by Salicylic Acid via the Cauliflower Mosaic Virus as-1 Element. Plant Cell, 6: 863-874.PubMedCrossRefGoogle Scholar
  153. Rao, M.V., and Davis, K.R. 1999. Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J., 17: 603-614.PubMedCrossRefGoogle Scholar
  154. Rao, M.V., Paliyath, G., Ormrod, D.P., Murr, D.P., and Watkins, C.B. 1997. Influence of Salicylic Acid on H2O2 Production, Oxidative Stress, and H2O2-Metabolizing Enzymes (Salicylic Acid-Mediated Oxidative Damage Requires H2O2). Plant Physiol., 115: 137-149.PubMedCrossRefGoogle Scholar
  155. Rhee, S.Y., Beavis, W., Berardini, T.Z., Chen, G., Dixon, D., Doyle, A., Garcia-Hernandez, M., Huala, E., Lander, G., Montoya, M., Miller, N., Mueller, L.A., Mundodi, S., Reiser, L., Tacklind, J., Weems, D.C., Wu, Y., Xu, I., Yoo, D., Yoon, J., and Zhang, P. 2003. The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucl. Acids Res., 31: 224-228.PubMedCrossRefGoogle Scholar
  156. Roberts, M.R., Darby, R., Lim, E.K., Draper, J., Boeles, D.J., 1999. Differential regulation of a glucosyl transferase gene homologue during defence responses in tobacco. J. Exp. Bot., 50: 407-410.CrossRefGoogle Scholar
  157. Romeis, T., Piedras, P., Zhang, S., Klessig, D., Hirt, H., and Jones, J. 1999. Rapid Avr9- and Cf-9 -dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell, 11: 273-287.PubMedCrossRefGoogle Scholar
  158. Ross, J., Li, Y., Lim, E.-K., and Bowles, D. 2001. Higher plant glycosyltransferases. Gen. Biol., 2: reviews 3004.3001 - reviews3004.3006.Google Scholar
  159. Rouhier, N., Gelhaye, E., Gualberto, J.M., Jordy, M.-N., De Fay, E., Hirasawa, M., Duplessis, S., Lemaire, S.D., Frey, P., Martin, F., Manieri, W., Knaff, D.B., and Jacquot, J.-P. 2004. Poplar Peroxiredoxin Q. A Thioredoxin-Linked Chloroplast Antioxidant Functional in Pathogen Defense. Plant Physiol., 134: 1027-1038.PubMedCrossRefGoogle Scholar
  160. Rouhier, N., Gelhaye, E., Sautiere, P.-E., Brun, A., Laurent, P., Tagu, D., Gerard, J., de Fay, E., Meyer, Y., and Jacquot, J.-P. 2001. Isolation and Characterization of a New Peroxiredoxin from Poplar Sieve Tubes That Uses Either Glutaredoxin or Thioredoxin as a Proton Donor. Plant Physiol., 127: 1299-1309.PubMedCrossRefGoogle Scholar
  161. Roxas, V., Smith, R.K. Jr,, Allen, E.R., Allen, R.D., 1997. Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nature Biotech., 15: 988-991.CrossRefGoogle Scholar
  162. Rusterucci, C., Aviv, D.H., Holt, B.F., 3rd, Dangl, J.L., and Parker, J.E. 2001. The disease resistance signaling components EDS1 and PAD4 are essential regulators of the cell death pathway controlled by LSD1 in Arabidopsis. Plant Cell, 13: 2211-2224.PubMedCrossRefGoogle Scholar
  163. Salinas, P., Bantignies, B., Tapia, J., Jordana, X., and Holuigue, L. 2001. Cloning and characterization of the cDNA coding for the catalytic alpha subunit of CK2 from tobacco. Mol Cell Biochem., 227: 120-135.CrossRefGoogle Scholar
  164. Sandermann, H.J. 1992. Plant metabolism of xenobiotics. Trends Biochem. Sci., 17: 82-84.PubMedCrossRefGoogle Scholar
  165. Sappl, P.G., Onate-Sanchez, L., Singh, K.B., and Millar, A.H. 2004. Proteomic analysis of glutathione S -transferases of Arabidopsis thaliana reveals differential salicylic acid-induced expression of the plant-specific phi and tau classes. Plant Mol. Biol., 54: 205-219.PubMedCrossRefGoogle Scholar
  166. Schiermeyer, A., Thurow, C., and Gatz, C. 2003. Tobacco bZIP factor TGA10 is a novel member of the TGA family of transcription factors. Plant Mol. Biol., 51: 817-829.PubMedCrossRefGoogle Scholar
  167. Schoenbohm, C., Martens S., Eder, C., Forkmann, G., Weisshaar, B., 2000. Identification of the Arabidopsis thaliana flavonoid 3’-hydroxylase gene and functional expression of the encoded P450 enzyme. Biol. Chem., 381: 749-753.PubMedCrossRefGoogle Scholar
  168. Schuler, M.A., and Werck-Reichhart, D. 2003. Functional Genomics of P450S. Annu. Rev. Plant Biol., 54: 629-667.PubMedCrossRefGoogle Scholar
  169. Scott, I.M., Clarke, S.M., Wood, J.E., and Mur, L.A.J. 2004. Salicylate Accumulation Inhibits Growth at Chilling Temperature in Arabidopsis. Plant Physiol., 135: 1040-1049.PubMedCrossRefGoogle Scholar
  170. Shah, J. 2005. Lipids, Lipases, and Lipid-Modifying Enzymes in Plant Disease Resistance. Annu Rev Phytopathol. 43: 229-260.PubMedCrossRefGoogle Scholar
  171. Shah, J., Tsui, F., and Klessig, D.F. 1997. Characterization of a salicylic acid-insensitive mutant (sai1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol Plant Microbe Interact., 10: 69-78.PubMedCrossRefGoogle Scholar
  172. Speir, E., Yu, Z.-X., Ferrans, V.J., Huang, E.-S., and Epstein, S.E. 1998. Aspirin Attenuates Cytomegalovirus Infectivity and Gene Expression Mediated by Cyclooxygenase-2 in Coronary Artery Smooth Muscle Cells. Circ. Res., 83: 210-216.PubMedGoogle Scholar
  173. Stracke, R., Weber, M., and Wagner, B. 2001. The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol., 4: 447-456.PubMedCrossRefGoogle Scholar
  174. Strompen, G., Gruner, R., and Pfitzner, U.M. 1998. An as-1-like motif controls the level of expression of the gene for the pathogenesis-related protein 1a from tobacco. Plant Mol. Biol., 37: 871-883.PubMedCrossRefGoogle Scholar
  175. Subramaniam, R., Desveaux, D., Spickler, C., Michnick, S.W., and Brisson, N. 2001. Direct visualization of protein interactions in plant cells. Nature Biotech., 19: 769-772.CrossRefGoogle Scholar
  176. Sugimoto, K., Takeda, S., and Hirochika, H. 2000. MYB-Related Transcription Factor NtMYB2 Induced by Wounding and Elicitors is a Regulator of the Tobacco Retrotransposon Tto1 and Defense-Related Genes. Plant Cell, 12: 2511-2528.PubMedCrossRefGoogle Scholar
  177. Surplus, S.L., Jordan, B.R., Murphy, A.M., Carr, J.P., Thomas, B., and Mackerness, S.A.H. 1998. Ultraviolet-B-induced responses in Arabidopsis thaliana: role of salicylic acid and reactive oxygen species in the regulation of transcripts encoding photosynthetic and acidic pathogenesis-related proteins. Plant Cell Environ., 21: 685-694.CrossRefGoogle Scholar
  178. Thurow, C., Schiermeyer, A., Krawczyk, S., Butterbrodt, T., Nickolov, K., and Gatz, C. 2005. Tobacco bZIP transcription factor TGA2.2 and related factor TGA2.1 have distinct roles in plant defense responses and plant development. Plant J., 44: 100-113.PubMedCrossRefGoogle Scholar
  179. Tohge, T., Nishiyama, Y., Yokota Hirai, M., Yano, M., Nakajim, J., Awazuhara, M., Inoue, E., Takahashi, H., Goodenowe, D., Kitayama, M., Noji, M., Yamazaki, M., and Saito, K. 2005. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J. 42: 218-235.PubMedCrossRefGoogle Scholar
  180. Uknes, S., Dincher, S., Friedrich, L., Negrotto, D., Williams, S., Thompson-Taylor, H., Potter, S., Ward, E., and Ryals, J. 1993. Regulation of pathogenesis-related protein-1a gene expression in tobacco. Plant Cell, 5: 159-169.PubMedCrossRefGoogle Scholar
  181. Ulmasov, T., Hagen, G., and Guilfoyle, T. 1994. The ocs element in the soybean GH2/4 promoter is activated by both active and inactive auxin and salicylic acid analogues. Plant Mol. Biol., 26: 1055-1064.PubMedCrossRefGoogle Scholar
  182. Uquillas, C., Letelier, I., Blanco, F., Jordana, X., and Holuigue, L. 2004. NPR1-independent activation of immediate early salicylic acid-responsive genes in Arabidopsis. Mol. Plant Microbe Interact., 17: 34-42.PubMedCrossRefGoogle Scholar
  183. Van Camp, W., Capiau, K., Van Montagu, M., Inze, D., and Slooten, L. 1996. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol., 112: 1703-1714.PubMedCrossRefGoogle Scholar
  184. Van Lonn, L.C., and Van Strien, E.A. 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Path., 55: 85-97.CrossRefGoogle Scholar
  185. Van Loon LC, v.K.A. 1970. Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. "Samsun" and "Samsun NN". II. Changes in protein constitution after infection with tobacco mosaic virus. Virology, 40: 190-211.PubMedCrossRefGoogle Scholar
  186. Vanderauwera, S., Zimmermann, P., Rombauts, S., Vandenabeele, S., Langebartels, C., Gruissem, W., Inze,., and Van Breusegem, F. 2005. Genome‐Wide Analysis of Hydrogen Peroxide‐Regulated Gene Expression in Arabidopsis Reveals a High Light‐Induced Transcriptional Cluster Involved in Anthocyanin Biosynthesis. Plant Physiol., 139: 806-821.PubMedCrossRefGoogle Scholar
  187. Wang, D., Weaver, N.D., Kesarwani, M., and Dong, X. 2005. Induction of Protein Secretory Pathway Is Required for Systemic Acquired Resistance. Science, 308: 1036-1040.PubMedCrossRefGoogle Scholar
  188. Weigel, R.R., Bauscher, C., Pfitzner, A.J., and Pfitzner, U.M. 2001. NIMIN-1, NIMIN-2 and NIMIN-3, members of a novel family of proteins from Arabidopsis that interact with NPR1/NIM1, a key regulator of systemic acquired resistance in plants. Plant Mol. Biol., 46: 143-160.PubMedCrossRefGoogle Scholar
  189. Weigel, R.R., Pfitzner, U.M., and Gatz, C. 2005. Interaction of NIMIN1 with NPR1 Modulates PR Gene Expression in Arabidopsis. Plant Cell, 17: 1279-1291.PubMedCrossRefGoogle Scholar
  190. Wiermer, M., Feys, B.J., and Parker, J.E. 2005. Plant immunity: the EDS1 regulatory node. Curr. Opin. Plant Biol.., 8: 383-389.PubMedCrossRefGoogle Scholar
  191. Wildermuth, M.C., Dewdney, J., Wu, G., and Ausubel, F.M. 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414: 562-565.PubMedCrossRefGoogle Scholar
  192. Xiang, C., Miao, Z., and Lam, E. 1997. DNA-binding properties, genomic organization and expression pattern of TGA6, a new member of the TGA family of bZIP transcription factors in Arabidopsis thaliana. Plant Mol. Biol., 34: 403-415.PubMedCrossRefGoogle Scholar
  193. Xiang, C., Miao, Z.H., and Lam, E. 1996. Coordinated activation of as-1-type elements and a tobacco glutathione S-transferase gene by auxins, salicylic acid, methyl-jasmonate and hydrogen peroxide. Plant Mol. Biol., 32: 415-426.PubMedCrossRefGoogle Scholar
  194. Xu, Y., Chang, P., Liu, D., Narasimhan, M., Raghothama, K., Hasegawa, P., and R, B. 1994. Plant Defense Genes Are Synergistically lnduced by Ethylene and Methyl Jasmonate. Plant Cell, 6: 1077-1085.PubMedCrossRefGoogle Scholar
  195. Yalpani, N., Enyedi, A.J., J., L., and Raskin, I. 1994. Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis related proteins and virus resistance in tobacco. Planta, 193: 372-376.CrossRefGoogle Scholar
  196. Yalpani, N., Silverman, P., Wilson, T., Kleier, D.A., and Raskin, I. 1991. Salicylic Acid Is a Systemic Signal and an Inducer of Pathogenesis-Related Proteins in Virus-Infected Tobacco. Plant Cell, 3: 809-818.PubMedCrossRefGoogle Scholar
  197. Yamazaki, D., Motohashi, K., Kasama, T., Hara, Y., and Hisabori, T. 2004. Target Proteins of the Cytosolic Thioredoxins in Arabidopsis thaliana. Plant Cell Physiol., 45: 18-27.PubMedCrossRefGoogle Scholar
  198. Yang, Y., Qi, M., and Mei, C. 2004. Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J., 40: 909-919.PubMedCrossRefGoogle Scholar
  199. Yoshiba, Y., Kiyosue, T., Nakashima, K., Yamaguchi-Shinozaki, K., and K., S. 1997. Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol., 38: 1095-1102.PubMedGoogle Scholar
  200. Yu, E.Y., Kim, S.E., Kim, J.H., Ko, J.H., Cho, M.H., and Chung, I.K. 2000. Sequence-specific DNA Recognition by the Myb-like Domain of Plant Telomeric Protein RTBP1. J. Biol. Chem., 275: 24208-24214.PubMedCrossRefGoogle Scholar
  201. Zhang, Y., Fan, W., Kinkema, M., Li, X., and Dong, X. 1999. Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc. Natl. Acad. Sci. USA. 96: 6523-6528.PubMedCrossRefGoogle Scholar
  202. Zhang, Y., Tessaro, M.J., Lassner, M., and Li, X. 2003. Knockout Analysis of Arabidopsis Transcription Factors TGA2, TGA5, and TGA6 Reveals Their Redundant and Essential Roles in Systemic Acquired Resistance. Plant Cell, 15: 2647-2653.PubMedCrossRefGoogle Scholar
  203. Zhao, J., Davis, L.C., and Verpoorte, R. 2005. Elicitor signal transduction leading to production of plant secondary metabolites. Biotech. Advan., 23: 283-333.CrossRefGoogle Scholar
  204. Zhou, J.M., Trifa, Y., Silva, H., Pontier, D., Lam, E., Shah, J., and Klessig, D.F. 2000. NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol. Plant Microbe Interact., 13: 191-202.PubMedCrossRefGoogle Scholar
  205. Zhou, N., Tootle, T.L., Tsui, F., Klessig, D.F., and Glazebrook, J. 1998. PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis. Plant Cell, 10: 1021-1030.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Loreto Holuigue
    • 1
  • Paula Salinas
    • 1
  • Francisca Blanco
    • 1
  • Virginia GarretÓn
    • 2
  1. 1.Facultad de Ciencias BiológicasUniversidad Católica de ChileSantiagoChile
  2. 2.Facultad de Ciencias NaturalesUniversidad Santo TomáSantiagoChile

Personalised recommendations