Stand-off Explosives Detection Using Terahertz Technology

  • Michael C. Kemp
  • Colin Baker
  • Ian Gregory
Conference paper
Part of the NATO Security through Science Series book series


Terahertz imaging and spectroscopy has been shown to have the potential to use very low levels of this non-ionising radiation to detect and identify objects hidden under clothing at stand-off distances. In this paper we discuss some of the important factors involved in developing systems for the security industry, and describe our recent work on the development of a prototype terahertz stand-off detection system. Using this system we demonstrate the spectroscopic detection of concealed explosives at a stand-off distance of 1 m, both real time, in reflection, and under normal atmospheric conditions. We believe the technique has the potential for further development towards a practical system for the detection of suicide bombers and mobile subjects.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Auston, D.H., 1975. Picosecond optoelectronic switching and gating in silicon, Appl. Phys. Lett., 26, 101–103.CrossRefGoogle Scholar
  2. [2]
    Uhd Jepsen, P., R.H. Jacobsen, and S.R. Keiding, 1996. Generation and detection of terahertz pulses from biased semiconductor antennas, J. Opt. Soc. Am. B, 13, 2424–2436.Google Scholar
  3. [3]
    Kemp, M.C., P.F. Taday, B.E. Cole, J.A. Cluff, A.J. Fitzgerald, and W.R. Tribe, 2003. Security applications of terahertz technology, SPIE 5070, 44.Google Scholar
  4. [4]
    Tribe, W.R., D.A. Newnham, P.F. Taday, and M.C. Kemp, 2004. Hidden object detection: security applications of terahertz technology, SPIE 5354, 168.CrossRefGoogle Scholar
  5. [5]
    Strachan, C.J., P.F. Taday, D.A. Newnham, K.C. Gordon, J.A. Zeitler, M. Pepper, and T. Rades, 2005. Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity, J. Pharma. Sci., 94, 837–846.CrossRefGoogle Scholar
  6. [6]
    Mittleman, D.M., R.H. Jacobsen, and M.C. Nuss, 1996. T-ray imaging IEEE J. Sel. Top. Quantum Electron., 2, 679–692.CrossRefGoogle Scholar
  7. [7]
    Pickwell, E., B.E. Cole, A.J. Fizgerald, M. Pepper, and V.P. Wallace, 2004. In vivo study of human skin using pulsed terahertz radiation, Phys. Med. Biol., 49, 1595–1607.CrossRefGoogle Scholar
  8. [8]
    Wallace, V.P., A.J. Fizgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D.D. Arnone, 2004. Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo, Brit. J. Dermatol., 151, 424–432.CrossRefGoogle Scholar
  9. [9]
    Smith P.R., D.H. Auston, and M.C. Nuss, 1988. Subpicosecond photoconducting dipole antennas, IEEE J. Quantum Electron., 24, 255–260.CrossRefGoogle Scholar
  10. [10]
    Piao, Z., M. Tani, and K. Sakai, 2000. Carrier dynamics and terahertz radiation in photoconductive antennas, Jpn. J. Appl. Phys., 39 (Part 1), 96–100.CrossRefGoogle Scholar
  11. [11]
    Smith, F.W., H.Q. Le, V. Diadiuk, M.A. Hollis, A.R. Calawa, S. Gupta, M. Frankel, D.R. Dykaar, G.A. Mourou, and T.Y. Hsiang, 1989. Picosecond GaAs-based photoconductive optoelectronic detectors, Appl. Phys. Lett., 54, 890–892.CrossRefGoogle Scholar
  12. [12]
    Chen, Y., S. Williamson, T. Brock, F.W. Smith, and A.R. Calawa, 1991. 375-GHz-bandwidth photoconductive detector, Appl. Phys. Lett., 59, 1984–1986.CrossRefGoogle Scholar
  13. [13]
    Tani M., K. Sakai, and H. Mimura, 1997. Ultrafast photoconductive detectors based on semi-insulating GaAs and In P, Jpn. J. Appl. Phys., 36, L1175–L1178.CrossRefGoogle Scholar
  14. [14]
    Kono, S., M. Tani, P. Gu, and K. Sakai, 2000. Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses, Appl. Phys. Lett., 77, 4104–4106.CrossRefGoogle Scholar
  15. [15]
    Baker C., I.S. Gregory, W.R. Tribe, I.V. Bradley, M.J. Evans, M. Withers, P.F. Taday, V.P. Wallace, E.H. Linfield, A.G. Davies, and M. Missous, 2003. Terahertz pulsed imaging with 1.06 μ m laser excitation, Appl. Phys. Lett., 83, 4113–4115.CrossRefGoogle Scholar
  16. [16]
    Gregory, I.S., C. Baker, W.R. Tribe, M.J. Evans, H.E. Beere, E.H. Linfield, A.G. Davies, and M. Missous, 2003. High resistivity annealed low-temperature GaAs with 100 fs lifetimes, Appl. Phys. Lett., 83, 4199–4201.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Michael C. Kemp
    • 1
  • Colin Baker
    • 2
  • Ian Gregory
    • 2
  1. 1.Iconal Technology Ltd.St. John Innovation CentreCambridgeUnited Kingdom
  2. 2.TeraView LtdCambridgeUnited Kingdom

Personalised recommendations