Stand-Off Detection of Surface Contaminations with Explosives Residues Using Laser-Spectroscopic Methods

  • Reinhard Noll
  • Cord Fricke-Begemann
Part of the NATO Security through Science Series book series


Laser-spectroscopic methods have a high potential for the remote detection of surface contaminations with residues of explosives, since they can operate contactless, fast and sensitive. Laser-induced breakdown spectroscopy and Raman spectroscopy are two versatile methods which can be employed to identify a wide variety of materials and for which stand-off operation has been demonstrated. Since both methods provide complementary spectroscopic information while using a similar instrumentation they can be combined to further increase the selectivity and sensitivity as necessary for security applications.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balzer, H., M. Hoehne, V. Sturm, and R. Noll, 2005. Online coating thickness measurement and depth profiling of zinc coated sheet steel by laser-induced breakdown spectroscopy, Spectrochim. Acta B, 60, 1172–1178.CrossRefGoogle Scholar
  2. Bette, H., and R. Noll, 2004. High-speed laser-induced breakdown spectrometry for scanning microanalysis, J. Phys. D: Appl. Phys. 37, 1281–1288.CrossRefGoogle Scholar
  3. Bette, H., R. Noll, G. Müller, H.-W. Jansen, Ç. Nazikkol, and H. Mittelstädt, 2005. High-speed scanning laser-induced breakdown spectroscopy at 1000 Hz with single pulse evaluation for the detection of inclusions in steel, J. Laser Appl. 17, 183–190.CrossRefGoogle Scholar
  4. Brysch, A., V. Sturm, R. Noll, H. Denecke-Arnold, H. Brinkmann, K. Mülheims, A. Opfermann, K. Mavrommatis, H.W. Gudenau, and K. Heinänen, 2002. Laser-based elemental analysis of the top gas of a blast furnace, VDI-Bericht, Int. Symposium on Photonics in Measurement, Bericht-Nr. 1694, pp. 117–123.Google Scholar
  5. Carter, J.C., S.M. Angel, M. Lawrence-Snyder, J. Scaffidi, R.E. Whipple, and J.G. Reynolds, 2005. Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument, Appl. Spectrosc., 59 (6), 769–775.CrossRefGoogle Scholar
  6. DeLucia, F.C. Jr. R.S. Harmon, K.L. McNesby, R.J. Winkel Jr., and A.W. Miziolek, 2003. Laser-induced breakdown spectroscopy analysis of energetic materials, Appl. Opt., 30, 6148–6152.Google Scholar
  7. Hubble, H.W., M. Ghosh, S.K. Sharma, K.A. Horton, P.G. Lucey, S.M. Angel, and R.C. Wiens, 2002. A combined remote LIBS and Raman spectroscopic study of minerals. Lunar Planet. Sci. XXXIII, 1935.Google Scholar
  8. Lopez-Moreno, C., S. Palanco, J.J. Laserna, F.C. DeLucia, J. Miziolek, A.W. Miziolek, J. Rose, R.A. Walters, and A.I. Whitehouse, 2005. Stand-off detection of explosive residues on solid surfaces with laser-induced breakdown spectroscopy, Presented at the EMSLIBS2005, Aachen, 6–9, September 2005.Google Scholar
  9. Miziolek, A.W., and F.C. DeLucia, 2005. Overview of Laser Induced Breakdown Spectroscopy (LIBS)—An Emerging Versatile Sensor Technology for Counter-IED Applications, Presented at the Counter-IED NATO Meeting, Norfolk, VA, 6–7, April 2005.Google Scholar
  10. Mönch, I., R. Noll, R. Buchholz, and J. Worringer, 2000. Laser identifies steel grades, Stainless Steel World, 4, 25–29.Google Scholar
  11. Noll, R., H. Bette, A. Brysch, F. Hilbk-Kortenbruck, O. Klein, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, 2001. Laser-induced breakdown spectrometry—from R&D to industrial use: an overview of LIBS applications for process control and quality assurance in steel industry, Spectrochim. Acta B, 56, 637–649.CrossRefGoogle Scholar
  12. Noll, R., R. Sattmann, V. Sturm, and S. Winkelmann, 2004. Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples, J. Anal. At. Spectrom. 19, 419–428.CrossRefGoogle Scholar
  13. Noll, R., I. Mönch, O. Klein, and A. Lamott, 2005. Concept and performance of inspection machines for industrial use based on LIBS, Spectrochim. Acta B, 60, 1070–1075.CrossRefGoogle Scholar
  14. Palanco, S., and J. Laserna, 2004. Remote sensing instrument for solid samples based on open-path atomic emission spectrometry, Rev. Sci. Instrum., 75, 2068–2074.CrossRefGoogle Scholar
  15. Romano, C., S. Gräser, K. Faulian, W. Schade, and G. Holl, 2004. Applications of LIBS spectroscopy for remote bulk detection of explosives, edited by H. Schubert, A. Kuznetsov, Detection of bulk explosives, pp. 167–173.Google Scholar
  16. Sattmann, R., V. Sturm, and R. Noll, 1995. Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses, J. Phys. D: Appl. Phys. 28, 2181–2187.CrossRefGoogle Scholar
  17. Sattmann, R., I. Mönch, H. Krause, R. Noll, S. Couris, A. Hatziapostolou, A. Mavromanolakis, C. Fotakis, E. Larrauri, and R. Miguel, 1998. Laser-induced breakdown spectroscopy for polymer identification, Appl. Spectrosc. 52, 456–461.CrossRefGoogle Scholar
  18. Schade, W., and R. Harmon, 2005. Conclusions of the Security Workshop at the 3rd Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy, held at Fraunhofer ILT, Aachen, Germany, September 6, 2005.Google Scholar
  19. Stepputat, M., and R. Noll, 2003. On-line detection of heavy metals and brominated flame retardants in technical polymers with laser-induced breakdown spectrometry, Appl. Opt. 42, 6210–6220.Google Scholar
  20. Sturm, V., A. Brysch, R. Noll, H. Brinkmann, R. Schwalbe, K. Mülheims, P. Luoto, P. Mannila, K. Heinänen, D. Carrascal, L. Sancho, A. Opfermann, K. Mavrommatis, H.W. Gudenau, A. Hatziapostolou, and S. Couris, 2006. Online multi-element analysis of the top gas of a blast furnance by LIBS. Proceedings of the 7th international workshop on Progress in Analytical Chemistry in the Steel and Metal Industries, 16–18 May 2006, J. Angeli (ed.), Verlag Glückauf Gmbh, Essen, Germany, pp. 183–188.Google Scholar
  21. Wiens, R.C., D.A. Cremers, M. Ferris, J.E. Nordholt, J.D. Blacic, P. Lucey, and S.K. Sharma, 2000. Development of a prototype laser-induced breakdown spectroscopy (LIBS) instrument with stand-off Raman capabilities as part of the Mars Instrument Development Program. Lunar Planet. Sci. XXXI, 1468, The Lunar and Planetary Institute, Houston.Google Scholar
  22. Wiens, R.C., S.K. Sharma, J. Thompson, A. Misra, and P.G. Lucey, 2005. Joint analyses by laser induced breakdown spectroscopy and Raman spectroscopy at stand-off distances, Spectrochim. Acta A, 61 (10), 2324–2334.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Reinhard Noll
    • 1
  • Cord Fricke-Begemann
    • 1
  1. 1.Department of Laser Measurement and Testing TechnologyFraunhofer Institute for Laser TechnologyAachenGermany

Personalised recommendations