Rexia erecta gen. et sp. nov. and Capsosira lowei sp. nov., two newly described cyanobacterial taxa from the Great Smoky Mountains National Park (USA)

  • Dale A. Casamatta
  • Shannon R. Gomez
  • Jeffrey R. Johansen
Part of the Developments in Hydrobiology book series (DIHY, volume 185)


Two newly discovered taxa of Cyanobacteria from the Great Smoky Mountain National Park (USA) are presented. The first is the newly described species Capsosira lowei (Capsosiraceae), differing from the only other previously described species C. brebissonii Kü tz. ex Born. et Flah. in regard to cell size and filament morphology. In addition, C. brebissonii is described as an aquatic or subaerophytic taxon, while our isolate was obtained as a phycobiont from the lichen Hydrothyria venosa J. L. Russell. Capsosira is currently placed in the Capsosiraceae of the Stigonematales due to its ability to have division in two planes. However, molecular evidence gathered in this study indicates closest affinity with Aulosira and Nostoc commune Vaucher, both in the Nostocaceae, Nostocales. Rexia erecta was isolated from concurrently collected aerophytic, epilithic sites. The hormogonia production, near absence of heterocysts and division in two planes are all typical of the Stigonematales, but it fits none of the currently circumscribed families in that order. This genus in other ways appears morphologically similar to members of the Scytonemataceae and Microchaetaceae. Molecular evidence (nearly complete 16S rRNA sequence data and 16S–23S internal transcribed spacer ITS region) places Rexia in the Microchaetaceae. These taxa are both problematic as they indicate that cell division in two planes has likely arisen more than once in the Nostocales, and thus the Stigonematales as currently circumscribed is not a monophyletic group. The Nostocales and Stigonematales are, in our opinion, in need of revision at the family and order level of classification.

Key words

ATBI Capsosira Cyanobacteria endophytic epilithic Nostocales Rexia Stigonematales 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmadjian, V., 1989. Studies on the isolation and synthesis of bionts of the cyanolichen Peltigera canina (Peltigeraceae). Plant Systematics and Evolution 165: 29–38.CrossRefGoogle Scholar
  2. Anagnostidis, K. & J. Komaárek, 1990. Modern approach to the classification system of Cyanophytes 5-Stigonematales. Algological Studies 59: 1–73.Google Scholar
  3. Bold, H. C. & M. J. Wynne, 1978. Introduction to the Algae. Prentice-Hall, Englewood Cliffs, New Jersey, 706 pp.Google Scholar
  4. Boyer, S., V. R. Flechtner & J. R. Johansen, 2001. Is the 16S-23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Molecular Biology and Evolution 18: 1057–1069.PubMedGoogle Scholar
  5. Boyer, S., J. R. Johansen & V. R. Flechtner, 2002. Phylogeney and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16S rRNA gene and associated 16S-23S ITS region. Journal of Phycology 38: 1222–1235.CrossRefGoogle Scholar
  6. Bubrick, P., 1988. Effects of symbiosis on the phycobiont. In Galun, M. (ed.), CRC Handbook of Lichenology. CRC Press, Boca Raton, Florida: 133–144.Google Scholar
  7. Cullings, K. W., 1992. Simplified Doyle and Doyle extraction procedure. Molecular Ecology 1: 233–240.Google Scholar
  8. Davis, J. S. & D. G. Rands, 1993. Observations on lichenized and free-living Physolinum (Chlorophyta, Trentepohliaceae). Journal of Phycology 29: 819–825.CrossRefGoogle Scholar
  9. Doyle, J. J. & J. L. Doyle, 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15.Google Scholar
  10. Fink, B., 1935. The Lichen Flora of the United States. University of Michigan Press, Ann Arbor.Google Scholar
  11. Flechtner, V. R., S. L. Boyer, J. R. Johansen & M. L. DeNoble, 2002. Spirirestis rafaelensis gen et sp nov (Cyanophyceae) a new cyanobacterial genus from arid soils. Nova Hedwigia 74: 1–24.CrossRefGoogle Scholar
  12. Geitler, L., 1932. Cyanophyceae. In Rabenhorst,s Kryptogamenflora von Deutschland, Ö sterreich und der Schweiz. Reprint by Koeltz Scientific Books, Königstein, Germany 14: 1–1196.Google Scholar
  13. Gomez, S. R., J. R. Johansen & R. L. Lowe, 2003. Epilithic aerial algae of Great Smoky Mountain National Park. Biologia Bratislavia 58: 603–615.Google Scholar
  14. Iteman, I., R. Rippka, N. Tandeau de Marsac & M. Herdman, 2000. Comparison of conserved structural and regulatory domains within divergent 16S rRNA-23S rRNA spacer sequences of cyanobacteria. Microbiology 146: 1275–1286.PubMedGoogle Scholar
  15. Johansen, J. R., R. L. Lowe, S. R. Gomez, J. P. Kociolek & S. A. Makosky, 2004. New algal species records for the Great Smoky Mountains National Park, with an annotated checklist of all reported algal species for the park. Algological Studies 111: 17–44.CrossRefGoogle Scholar
  16. Komárek, J., J. Komárková & H. Kling, 2003. Filamentous cyanobacteria. In Wehr, J. D. & R. G. Sheath (eds), Freshwater Algae of North America. Academic Press, New York: 117–196.Google Scholar
  17. Kützing, F. T., 1849. Species algarum. Reprint by A. Asher and Co, Amsterdam.Google Scholar
  18. Nübel, U., F. Garcia-Pichel & G. Muyzer, 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. Applied and Environmental Microbiology 63: 3327–3332.PubMedGoogle Scholar
  19. Posada, D. & K. A. Crandall, 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817–818.PubMedCrossRefGoogle Scholar
  20. Sharkey, M. J., 2001. The all taxa biological inventory of the Great Smoky Mountains National Park. Florida Entomologist 84: 556–564.CrossRefGoogle Scholar
  21. Stackebrandt, E. & B. M. Goebel, 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic Bacteriology 44: 846–849.CrossRefGoogle Scholar
  22. Swofford, D. L., 1998. PAUP-Phylogenetic Analysis Using Parsimony, Version 4.02. Sinaur Associates, Sunderland, Massachusetts.Google Scholar
  23. Thompson, J. D., D. G. Higgins & T. J. Gibson, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.PubMedCrossRefGoogle Scholar
  24. Tilden, J., 1910. Minnesota algae. 1. The Myxophyceae of North America and Adjacent Regions. University of Minnesota, Minneapolis, Minnesota, 302 pp.Google Scholar
  25. Whitford, L. A. & G. J. Schumacher, 1984. A Manual of Fresh-Water Algae, revised ed. Sparks Press, Raleigh, North Carolina 337 pp.Google Scholar
  26. Wilmotte, A., G. Van der Auwera & R. De Wachter, 1993. Structure of the 16S ribosomal RNA of the thermophilic cyanobacterium Chlorogloeopsis HTF (‘Mastigocladus laminosus HTF’) strain PCC7518, and phylogenetic analysis. FEBS Microbiology Letters 317: 96–100.CrossRefGoogle Scholar
  27. Zucker, M., D. H. Mathews & D. H. Turner, 1999. Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide. In Barciszewski, J. & B. F. C. Clark (eds), RNA Biochemistry and Biotechnology. NATO ASI Series Kluwer Academic Publishing, Dordrecht: 11–43.Google Scholar
  28. Zuker, M., 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31: 3406–3415.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Dale A. Casamatta
    • 1
  • Shannon R. Gomez
    • 1
  • Jeffrey R. Johansen
    • 1
  1. 1.Department of BiologyJohn Carroll UniversityUniversity Heights, OhioUSA

Personalised recommendations