How and Why Mathematics is Unique as a Social Practice

  • Jody Azzouni
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 5)

Abstract

Difficulties are raised for views that explain consensus in mathematics using only sociological pressure. Mathematical proof is sociologically very peculiar, when compared to other socially constrained practices. A preliminary analysis of the factors that have been at work historically in the “benign fixation of mathematical practice” are then exhumed: dispositions, implicit applications, an implicit logic, all play a role.

Keywords

Consensus mathematical proof socially-constructed objects drift mature mathematics contemporary mathematics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, Stephen R. 1988. Morphological change. In Linguistics: the Cambridge survey, Vol.I: Linguistic theory: foundations. Cambridge: Cambridge University Press, 324-362.Google Scholar
  2. Azzouni, Jody 1994. Metaphysical myths, mathematical practice: the ontology and epistemology of the exact sciences. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  3. Azzouni, 2000a. Applying mathematics: an attempt to design a philosophical problem, The Monist 83(2):209-227.CrossRefGoogle Scholar
  4. Azzouni, 2000b. Knowledge and reference in empirical science. London: Routledge.CrossRefGoogle Scholar
  5. Azzouni, 2004a. Deflating existential commitment: a case for nominalism. Oxford: Oxford University Press.CrossRefGoogle Scholar
  6. Azzouni, 2004b. Proof and ontology in Euclidean mathematics. , In New Trends in the History and Philosophy of Mathematics, eds. Tinne Hoff Kjeldsen, Stig Andur Pedersen, Lise Mariane Sonne-Hansen (pp. 117-33). Denmark: University Press of Southern Denmark. .Google Scholar
  7. Azzouni, 2004c. The derivation-indicator view of mathematical practice, Philosophia Mathematica 12(3): 81-105.CrossRefGoogle Scholar
  8. Bloor, David 1983. Wittgenstein: a social theory of knowledge. New York: Columbia University Press.Google Scholar
  9. Brown, James Robert 1999. Philosophy of mathematics: an introduction to the world of proofs and pictures. London: Routledge.Google Scholar
  10. Descartes, René 1931a. Rules for the direction of the mind. The philosophical works of Descartes, trans. by Elizabeth S. Haldane and G.R.T.Ross (pp. 1-77), Cambridge: Cambridge University Press.Google Scholar
  11. Descartes, René 1931b. Meditations on first philosophy. In The philosophical works of Descartes, trans. by Elizabeth S. Haldane and G.R.T.Ross (pp. 131-99). Cambridge: Cambridge University Press.Google Scholar
  12. Dudley, Underwood 1987. A Budget of trisections. New York: Springer-Verlag.CrossRefGoogle Scholar
  13. Evans, Gareth 1973. The causal theory of names. In Collected papers, 1-24. Oxford: Oxford University Press (1985).Google Scholar
  14. Hersh, Ruben 1997. What is mathematics, really? Oxford: Oxford University Press.Google Scholar
  15. Jesseph, Douglas M. 1999. Squaring the circle: the war between Hobbes and Wallis. Chicago: University of Chicago Press.Google Scholar
  16. Kline, Morris 1980. Mathematics: the loss of certainty. Oxford: Oxford University Press.Google Scholar
  17. Kripke, Saul A. 1982. Wittgenstein on rules and private language. Cambridge, Massachusetts: Harvard University Press.Google Scholar
  18. Orwell, George 1949. 1984. New York: Harcourt, Brace and Company, Inc.Google Scholar
  19. Putnam, Hilary 1975. The meaning of ‘meaning’. In Mind, language and reality: philosophical papers (Vol. 2, pp. 139-52). Cambridge: Cambridge University Press.Google Scholar
  20. Resnik, Michael D. 1997. Mathematics as a science of patterns. Oxford: Oxford University Press.Google Scholar
  21. Westfall, Richard S. 1980. Never at rest: a biography of Isaac Newton. Cambridge: Cambridge University Press.Google Scholar
  22. Wittgenstein, Ludwig 1953. Philosophical investigations. Trans. G.E.M. Anscombe. New York: The Macmillan Company.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Jody Azzouni
    • 1
  1. 1.Tufts UniversityUSA

Personalised recommendations