P,T-PARITYVIOLATIONEFFECTS INPOLARHEAVY-ATOM MOLECULES

  • A. V. TITOV
  • N. S. MOSYAGIN
  • A. N. PETROV
  • T. A. ISAEV
  • D. P. DEMILLE
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 15)

Abstract

Investigation of P,T-parity nonconservation (PNC) phenomena is of fundamental importance for physics. Experiments to search for PNC effects have been performed on TlF and YbF molecules and are in progress for PbO and PbF molecules. For interpretation of molecular PNC experiments it is necessary to calculate those needed molecular properties which cannot be measured. In particular, electronic densities in heavy-atom cores are required for interpretation of the measured data in terms of the P,T-odd properties of elementary particles or P,T-odd interactions between them. Reliable calculations of the core properties (PNC effect, hyperfine structure etc., which are described by the operators heavily concentrated in atomic cores or on nuclei) usually require accurate accounting for both relativistic and correlation effects in heavy-atom systems. In this paper, some basic aspects of the experimental search for PNC effects in heavy-atom molecules and the computational methods used in their electronic structure calculations are discussed. The latter include the generalized relativistic effective core potential (GRECP) approach and the methods of nonvariational and variational one-center restoration of correct shapes of four-component spinors in atomic cores after a two-component GRECP calculation of a molecule. Their efficiency is illustrated with calculations of parameters of the effective P,T-odd spin-rotational Hamiltonians in the molecules PbF, HgF, YbF, BaF, TlF, and PbO.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Erler, J. and Ramsey-Musolf, M. J. Low energy tests of the weak interaction 2004 . Eprint http:// arXiv.org/ hep-ph/0404291.
  2. 2.
    Glashow, S. L. Nuclear Physics 1961, 22, 579.CrossRefGoogle Scholar
  3. 3.
    Weinberg, S. Phys. Rev. Lett. 1967, 19, 1264.CrossRefGoogle Scholar
  4. 4.
    Salam, A. In: N. Svartholm (ed.) Elementary particle theory, relativistic groups, and analyticity, pp. 367–377 (Almqvist and Wiksells, Stockholm, Sweden, 1968).Google Scholar
  5. 5.
    Weinberg, S. Phys. Rev. D 1972, 5, 1412.CrossRefGoogle Scholar
  6. 6.
    Commins, E. D. Adv. At. Mol. Opt. Phys. 1999, 40, 1.Google Scholar
  7. 7.
    Christenson, J. H., Cronin, J. W., Fitch, V. L., and Turlay, R. Phys. Rev. Lett. 1964, 13, 138.CrossRefGoogle Scholar
  8. 8.
    Sapirstein, J. In: Schwerdtfeger [41], pp. 468–522.Google Scholar
  9. 9.
    Berger, R. In: Schwerdtfeger [42], pp. 188–288.Google Scholar
  10. 10.
    Ginges, J. S. M. and Flambaum, V. V. Phys. Rep. 2004, 397, 63.CrossRefGoogle Scholar
  11. 11.
    Landau, L. D. Sov. Phys.-JETP 1957, 5, 336.Google Scholar
  12. 12.
    Regan, B. C., Commins, E. D., Schmidt, C. J., and DeMille, D. Phys. Rev. Lett. 2002, 88, 071805/1.CrossRefGoogle Scholar
  13. 13.
    Romalis, M. V., Griffith, W. C., Jacobs, J. P., and Fortson, E. N. Phys. Rev. Lett. 2001, 86, 2505.CrossRefGoogle Scholar
  14. 14.
    Dmitriev, V. F. and Sen'kov, R. A. Phys. Rev. Lett. 2003, 91, 212303/1.Google Scholar
  15. 15.
    Sandars, P G. H. Phys. Rev. Lett. 1967, 19, 1396.CrossRefGoogle Scholar
  16. 16.
    Sandars, P. G. H. Phys. Lett. 1965, 14, 194.CrossRefGoogle Scholar
  17. 17.
    Hinds, E. A., Loving, C. E., and Sandars, P. G. H. Phys. Lett. B 1976, 62, 97.CrossRefGoogle Scholar
  18. 18.
    Cho, D., Sangster, K., and Hinds, E. A. Phys. Rev. A 1991, 44, 2783.CrossRefGoogle Scholar
  19. 19.
    Petrov, A. N., Mosyagin, N. S., Isaev, T. A., Titov, A. V., Ezhov, V. F., Eliav, E., and Kaldor, U. Phys. Rev. Lett. 2002, 88, 073001.CrossRefGoogle Scholar
  20. 20.
    Labzowsky, L. N. Sov. Phys.-JETP 1978, 48, 434.Google Scholar
  21. 21.
    Gorshkow, V. G., Labzovsky, L. N., and Moskalyov, A. N. Sov. Phys.-JETP 1979, 49, 209.Google Scholar
  22. 22.
    Sushkov, O. P. and Flambaum, V. V. Sov. Phys.-JETP 1978, 48, 608.Google Scholar
  23. 23.
    Sushkov, O. P., Flambaum, V. V., and Khriplovich, I. B. Sov. Phys.-JETP 1984, 87, 1521.Google Scholar
  24. 24.
    Flambaum, V. V. and Khriplovich, I. B. Phys. Lett. A 1985, 110, 121.CrossRefGoogle Scholar
  25. 25.
    Kozlov, M. G. Sov. Phys.-JETP 1985, 62, 1114.Google Scholar
  26. 26.
    Titov, A. V. PhD Thesis, (St.-Petersburg (former Leningrad) State University, Russia, 1985).Google Scholar
  27. 27.
    Kozlov, M. G., Fomichev, V. I., Dmitriev, Y. Y., Labzovsky, L. N., and Titov, A. V. J. Phys. B 1987, 20, 4939.CrossRefGoogle Scholar
  28. 28.
    Hudson, J. J., Sauer, B. E., Tarbutt, M. R., and Hinds, E. A. Phys. Rev. Lett. 2002, 89, 023003.CrossRefGoogle Scholar
  29. 29.
    DeMille, D., Bay, F., Bickman, S., Kawall, D., Krause, Jr., D., Maxwell, S. E., and Hunter, L. R. Phys. Rev. A 2000, 61, 052507.CrossRefGoogle Scholar
  30. 30.
    Okun’, L. B. Leptons and quarks (North Holland, Amsterdam, 1982).Google Scholar
  31. 31.
    Kobayashi, M. and Maskawa, T. Progr. Theor. Phys. 1973, 49, 652.CrossRefGoogle Scholar
  32. 32.
    Kazakov, D. I. Beyond the standard model (In search of supersymmetry) 2000. ArXiv: hep-ph/0012288.Google Scholar
  33. 33.
    Mohapatra, R. N. Unification and Supersymmetry. The Frontiers of Quark-Lepton Physics (Springer, New-York, U.S.A., 2003). 421pp.Google Scholar
  34. 34.
    Barr, S. M. Phys. Rev. Lett. 1992, 68, 1822.CrossRefGoogle Scholar
  35. 35.
    Barr, S. M. Int. J. Mod. Phys. A 1993, 8, 209.CrossRefGoogle Scholar
  36. 36.
    Ginzburg, I. F. and Krawczyk, M. Symmetries of two Higgs doublet model and CP violation 2004. ArXiv: hep-ph/0408011.Google Scholar
  37. 37.
    Pati, J. C. and Salam, A. Phys. Rev. D 1974, 10, 275.CrossRefGoogle Scholar
  38. 38.
    Liu, J. T. and Ng, D. Lepton flavor changing processes and CP violation in the 331 model 1994. ArXiv: hep-ph/9401228.Google Scholar
  39. 39.
    Masina, I. and Savoy, C. A. Changed lepton flavour and CP violation: Theoretical impact of present and future experiments 2004. ArXiv: hep-ph/0410382.Google Scholar
  40. 40.
    Khriplovich, I. B. and Lamoraux, S. K. CP Violation without Strangeness. The Electric Dipole Moments of Particles, Atoms, and Molecules (Springer-Verlag, Berlin, 1997).Google Scholar
  41. 41.
    Schwerdtfeger, P. (ed.). Relativistic Electronic Structure Theory. Part I. Fundamentals, vol. 11 of Theoretical and Computational Chemistry (Elsevier, Amsterdam, 2002). xx+926 pp.Google Scholar
  42. 42.
    Schwerdtfeger, P. (ed.). Relativistic Electronic Structure Theory. Part 2. Applications, vol. 14 of Theoretical and Computational Chemistry (Elsevier, Amsterdam, 2004). xv+ 787 pp.Google Scholar
  43. 43.
    Hirao, K. and Ishikawa, Y. (eds.). Recent Advances in Relativistic Molecular Theory (World Scientific, Singapore, 2004). 328pp.Google Scholar
  44. 44.
    Mosyagin, N. S. et al. GRECPs accounting for Breit effects. This issue.Google Scholar
  45. 45.
    Wood, J. H. and Boring, A. M. Phys. Rev. B 1978, 18, 2701.CrossRefGoogle Scholar
  46. 46.
    Barthelat, J. C., Pelissier, M., and Durand, P. Phys. Rev. A 1980, 21, 1773.CrossRefGoogle Scholar
  47. 47.
    van Lenthe, E., Baerends, E. J., and Snijders, J. G. J. Chem. Phys. 1993, 99, 4597.CrossRefGoogle Scholar
  48. 48.
    Wolf, A., Reiher, M., and Hess, B. A. In: Schwerdtfeger [41], pp. 622–663.Google Scholar
  49. 49.
    Kutzelnigg, W. Z. Phys. D 1990, 15, 27.CrossRefGoogle Scholar
  50. 50.
    Dyall, K. G. J. Comput. Chem. 2002, 23, 786.CrossRefGoogle Scholar
  51. 51.
    Visscher, L. J. Comput. Chem. 2002, 23, 759.CrossRefGoogle Scholar
  52. 52.
    Grant, I. P. and Quiney, H. (Les Houches, France, 2004). Conference “Quantum Systems in Chemistry and Physics: QSCP-IX”, oral and poster reports.Google Scholar
  53. 53.
    Saue, T., Jensen, H. J. A., Visscher, L., et al. “DIRAC04” 2004. A relativistic ab initio electronic structure program.Google Scholar
  54. 54.
    Quiney, H. M., Skaane, H., and Grant, I. P. Adv. Quantum Chem. 1999, 32, 1.Google Scholar
  55. 55.
    Grant, I. P., Quiney, H. M., and Skaane, H. “BERTHA” 1998. An ab initio relativistic molecular electronic structure program [54].Google Scholar
  56. 56.
    Lee, Y. S., Ermler, W. C., and Pitzer, K. S. J. Chem. Phys. 1977, 67, 5861.CrossRefGoogle Scholar
  57. 57.
    Ermler, W. C., Ross, R. B., and Christiansen, P. A. Adv. Quantum Chem. 1988, 19, 139.Google Scholar
  58. 58.
    Schwerdtfeger, P. In: U. Kaldor and S. Wilson (eds.) Theoretical chemistry and physics of heavy and superheavy elements, pp. 399–438 (Kluwer academic publishers, Dordrecht, The Netherlands, 2003).Google Scholar
  59. 59.
    Lee, Y. S. In: Schwerdtfeger [42], pp. 352–416.Google Scholar
  60. 60.
    Teichteil, C., Maron, L., and Vallet, V. In: Schwerdtfeger [42], pp. 476–551.Google Scholar
  61. 61.
    Blöchl, P. E. Phys. Rev. B 1990, 41, 5414.CrossRefGoogle Scholar
  62. 62.
    Vanderbilt, D. Phys. Rev. B 1990, 41, 7892.CrossRefGoogle Scholar
  63. 63.
    Theurich, G. and Hill, N. A. Phys. Rev. B 2001, 64, 073106, 1.CrossRefGoogle Scholar
  64. 64.
    Bonifacic, V. and Huzinaga, S. J. Chem. Phys. 1974, 60, 2779.CrossRefGoogle Scholar
  65. 65.
    Katsuki, S. and Huzinaga, S. Chem. Phys. Lett. 1988, 152, 203.CrossRefGoogle Scholar
  66. 66.
    Seijo, L. and Barandiarán, Z. In: Schwerdtfeger [42], pp. 417–475.Google Scholar
  67. 67.
    Petrov, A. N., Mosyagin, N. S., Titov, A. V., and Tupitsyn, I. I. J. Phys. B 2004, 37, 4621.CrossRefGoogle Scholar
  68. 68.
    Dyall, K. G. J. Chem. Phys. 1994, 100, 2118.CrossRefGoogle Scholar
  69. 69.
    Titov, A. V. and Mosyagin, N. S. Int. J. Quantum Chem. 1999, 71, 359.CrossRefGoogle Scholar
  70. 70.
    Mosyagin, N. S. and Titov, A. V. J. Chem. Phys. 2005, 122, 234106.CrossRefGoogle Scholar
  71. 71.
    Durand, P. and Barthelat, J.-C. Theor. Chim. Acta 1975, 38, 283.CrossRefGoogle Scholar
  72. 72.
    Christiansen, P. A., Lee, Y. S., and Pitzer, K. S. J. Chem. Phys. 1979, 71, 4445.CrossRefGoogle Scholar
  73. 73.
    Hamann, D. R., Schlüter, M., and Chiang, C. Phys. Rev. Lett. 1979, 43, 1494.CrossRefGoogle Scholar
  74. 74.
    Titov, A. V. and Mosyagin, N. S. Russ. J. Phys. Chem. 2000, 74, Suppl. 2, S376. [arXiv: physics/0008160].Google Scholar
  75. 75.
    Titov, A. V. Doctorate Thesis, (Petersburg Nuclear Physics Institute, RAS, Russia, 2002).Google Scholar
  76. 76.
    Phillips, J. C. and Kleinman, L. Phys. Rev. 1959, 116, 287.CrossRefGoogle Scholar
  77. 77.
    Pacios, L. F. and Christiansen, P. A. J. Chem. Phys. 1985, 82, 2664.CrossRefGoogle Scholar
  78. 78.
    Blöchl, P. E. Phys. Rev. B 1994, 50, 17953.CrossRefGoogle Scholar
  79. 79.
    Titov, A. V. In: Theses of reports of the 4th European Conf. on Atomic and Mol. Physics, p. 299 (Riga, Latvia, 1992).Google Scholar
  80. 80.
    Titov, A. V. Int. J. Quantum Chem. 1996, 57, 453.CrossRefGoogle Scholar
  81. 81.
    Desclaux, J. P. and Pyykkö, P. Chem. Phys. Lett. 1974, 29, 534.CrossRefGoogle Scholar
  82. 82.
    Desclaux, J. P. and Pyykkö, P. Chem. Phys. Lett. 1976, 39, 300.CrossRefGoogle Scholar
  83. 83.
    Desclaux, J.-P. In: Schwerdtfeger [41], pp. 1–22.Google Scholar
  84. 84.
    Pitzer, K. S. Acc. Chem. Res. 1979, 12, 271.CrossRefGoogle Scholar
  85. 85.
    Pyykkö, P. and Desclaux, J.-P. Acc. Chem. Res. 1979, 12, 276.CrossRefGoogle Scholar
  86. 86.
    Hinds, E. A. and Sandars, P. G. H. Phys. Rev. A 1980, 21, 471.CrossRefGoogle Scholar
  87. 87.
    Coveney, P. V. and Sandars, P. G. H. J. Phys. B 1983, 16, 3727.CrossRefGoogle Scholar
  88. 88.
    Laerdahl, J. K., Saue, T., Faegri, Jr, K., and Quiney, H. M. Phys. Rev. Lett. 1997, 79, 1642.CrossRefGoogle Scholar
  89. 89.
    Parpia, F. A. J. Phys. B 1997, 30, 3983.CrossRefGoogle Scholar
  90. 90.
    Dmitriev, Y. Y., Khait, Y. G., Kozlov, M. G., Labzovsky, L. N., Mitrushenkov, A. O., Shtoff, A. V., and Titov, A. V. Phys. Lett. A 1992, 167, 280.CrossRefGoogle Scholar
  91. 91.
    Titov, A. V. Int. J. Quantum Chem. 1992, 42, 1711.CrossRefGoogle Scholar
  92. 92.
    Titov, A. V., Mosyagin, N. S., and Ezhov, V. F. Phys. Rev. Lett. 1996, 77, 5346.CrossRefGoogle Scholar
  93. 93.
    Kozlov, M. G., Titov, A. V., Mosyagin, N. S., and Souchko, P. V. Phys. Rev. A 1997, 56, R3326.CrossRefGoogle Scholar
  94. 94.
    Mosyagin, N. S., Kozlov, M. G., and Titov, A. V. J. Phys. B 1998, 31, L763.CrossRefGoogle Scholar
  95. 95.
    Quiney, H. M., Skaane, H., and Grant, I. P. J. Phys. B 1998, 31, L85.CrossRefGoogle Scholar
  96. 96.
    Parpia, F. J. Phys. B 1998, 31, 1409.CrossRefGoogle Scholar
  97. 97.
    Isaev, T. A., Petrov, A. N., Mosyagin, N. S., Titov, A. V., Eliav, E., and Kaldor, U. Phys. Rev. A 2004, 69, 030501 (R).CrossRefGoogle Scholar
  98. 98.
    Petrov, A. N., Titov, A. V., Isaev, T. A., Mosyagin, N. S., and DeMille, D. P. Phys. Rev. A 2005, 72, 022505.CrossRefGoogle Scholar
  99. 99.
    Isaev, T. A., Mosyagin, N. S., Petrov, A. N., and Titov, A. V. Phys. Rev. Lett. 2005. In press; arXiv: physics/0412177.Google Scholar
  100. 100.
    Dzuba, V. A., Flambaum, V. V., and Kozlov, M. G. JETP Lett. 1996, 63, 882.CrossRefGoogle Scholar
  101. 101.
    Kaldor, U. In: R. J. Bartlett (ed.) Recent Advances in Coupled-Cluster Methods, pp. 125–153 (World Scientific, Singapore, 1997).Google Scholar
  102. 102.
    Landau, A., Eliav, E., and Kaldor, U. Adv. Quantum Chem. 2001, 39, 171.CrossRefGoogle Scholar
  103. 103.
    Buenker, R. J. and Krebs, S. In: K. Hirao (ed.) Recent Advances in Multireference Methods, pp. 1–29 (World Scientific, Singapore, 1999).Google Scholar
  104. 104.
    Alekseyev, A. B., Liebermann, H.-P., and Buenker, R. J. In: Hirao and Ishikawa [43], pp. 65–105.Google Scholar
  105. 105.
    Titov, A. V., Mosyagin, N. S., Alekseyev, A. B., and Buenker, R. J. Int. J. Quantum Chem. 2001, 81, 409.CrossRefGoogle Scholar
  106. 106.
    Dolg, M. In: J. Grotendorst (ed.) Modern Methods and Algorithms of Quantum Chemistry, vol. 1 of NIC Series, pp. 479–508 (Julich, 2000). [http://www.fz-juelich.de].Google Scholar
  107. 107.
    Titov, A. V. and Mosyagin, N. S. Comments on “Effective Core Potentials” by M.Dolg [106]. ArXiv.org/physics/0008239 (2000).Google Scholar
  108. 108.
    Titov, A. V. and Mosyagin, N. S. Structural Chem. 1995, 6, 317.CrossRefGoogle Scholar
  109. 109.
    Tupitsyn, I. I. “HFDB” 2003. Program for atomic finite-difference four-component Dirac-Hartree-Fock-Breit calculations written on the base of the HFD code [110].Google Scholar
  110. 110.
    Bratzev, V. F., Deyneka, G. B., and Tupitsyn, I. I. Bull. Acad. Sci. USSR, Phys. Ser. 1977, 41, 173.Google Scholar
  111. 111.
    Tupitsyn, I. I. and Petrov, A. N. In: 5-th Session of the V.A. Fock School on Quantum and Computational Chemistry, p. 62 (Novgorod the Great, 2002).Google Scholar
  112. 112.
    Tupitsyn, I. I. and Mosyagin, N. S. “GRECP/HFJ” 1995. Program for atomic finite-difference two-component Hartree-Fock calculations with the generalized RECP in the jj-coupling scheme.Google Scholar
  113. 113.
    Tupitsyn, I. I., Mosyagin, N. S., and Titov, A. V. J. Chem. Phys. 1995, 103, 6548.CrossRefGoogle Scholar
  114. 114.
    Lindgren, I. Rep. Prog. Phys. 1984, 47, 345.CrossRefGoogle Scholar
  115. 115.
    Kunik, D. and Kaldor, U. J. Chem. Phys. 1971, 55, 4127.CrossRefGoogle Scholar
  116. 116.
    Monkhorst, H. J. Int. J. Quantum Chem.: Quantum Chem. Symp. 1977, 11, 421.Google Scholar
  117. 117.
    Kozlov, M. and Labzowsky, L. J. Phys. B 1995, 28, 1931.CrossRefGoogle Scholar
  118. 118.
    Knight, Jr., L. B., Fisher, T. A., and Wise, M. B. J. Chem. Phys. 1981, 74, 6009.CrossRefGoogle Scholar
  119. 119.
    Huber, K. P. and Herzberg, G. Constants of Diatomic Molecules (Van Nostrand-Reinhold, New York, 1979).Google Scholar
  120. 120.
    Mosyagin, N. S. et al. GRECP&NOCR calculations of hyperfine structure and parity violation effects in YbF, HgF and HgH 2002. Unpublished.Google Scholar
  121. 121.
    Kozlov, M. G. and Ezhov, V. F. Phys. Rev. A 1994, 49, 4502.CrossRefGoogle Scholar
  122. 122.
    Knight, Jr., L. B. and Weltner, Jr., W. J. Chem. Phys. 1970, 53, L4111.CrossRefGoogle Scholar
  123. 123.
    Kozlov, M. G. J. Phys. B 1997, 30, L607.CrossRefGoogle Scholar
  124. 124.
    Knight, L. B., Easley, W. C., and Weltner, W. J. Chem. Phys. 1971, 54, 322.CrossRefGoogle Scholar
  125. 125.
    Ryzlewicz, C., Schütze-Pahlmann, H. U., Hoeft, J., and Torring, T. Chem. Phys. 1982, 71, 389.CrossRefGoogle Scholar
  126. 126.
    Schiff, L. I. Phys. Rev. 1963, 132, 2194.CrossRefGoogle Scholar
  127. 127.
    Quiney, H. M., Laerdahl, J. K., Faegri, Jr, K., and Saue, T. Phys. Rev. A 1998, 57, 920.CrossRefGoogle Scholar
  128. 128.
    Wilson, S., Moncrieff, D., and Kobus, J. TlF (1Σ+): Some preliminary electronic structure calculations 1994. RAL-94-082 Report.Google Scholar
  129. 129.
    Dzuba, V. A., Flambaum, V. V., Ginges, J. S. M., and Kozlov, M. G. Phys. Rev.A 2002, 66, 012111.CrossRefGoogle Scholar
  130. 130.
    Kaldor, U. and Eliav, E. Adv. Quantum Chem. 1999, 31, 313.Google Scholar
  131. 131.
    Kaldor, U., Eliav, E., and Landau, A. In: Hirao and Ishikawa [43], pp. 283–327.Google Scholar
  132. 132.
    Paldus, J. and Li, X. Adv. Chem. Phys. 1999, 110, 1.Google Scholar
  133. 133.
    Paldus, J. In: S. Wilson (ed.) Handbook of Molecular Physics and Quantum Chemistry, vol. 2, pp. 272–313 (John Wiley & Sons, Ltd, Chichester, 2003).Google Scholar
  134. 134.
    Egorov, D., Weinstein, J. D., Patterson, D., Friedrich, B., and Doyle, J. M. Phys.Rev. A 2001, 63, 030501 (R).CrossRefGoogle Scholar
  135. 135.
    Buenker, R. J. and Peyerimhoff, S. D. Theor. Chim. Acta 1974, 35, 33.CrossRefGoogle Scholar
  136. 136.
    Isaev, T. A., Mosyagin, N. S., Kozlov, M. G., Titov, A. V., Eliav, E., and Kaldor, U. J. Phys. B 2000, 33, 5139.CrossRefGoogle Scholar
  137. 137.
    Martin, F., Bacis, R., Verges, J., Bachar, J., and Rosenwaks, S. Spectrochim. Acta 1988, 44A, 889.Google Scholar
  138. 138.
    Hunter, L. R., Maxwell, S. E., Ulmer, K. A., Charney, N. D., Peck, S. K., Krause, D., Ter-Avetisyan, S., and DeMille, D. Phys. Rev. A 2002, 65, 030501(R).CrossRefGoogle Scholar
  139. 139.
    Kawall, D., Gurevich, Y., and DeMille, D. To be published.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • A. V. TITOV
    • 1
  • N. S. MOSYAGIN
    • 1
  • A. N. PETROV
    • 1
  • T. A. ISAEV
    • 1
  • D. P. DEMILLE
    • 2
  1. 1.Petersburg Nuclear Physics InstituteSt.-PetersburgRussia
  2. 2.Physics DepartmentYale UniversityConnecticutUSA

Personalised recommendations