• Ricardo Hueso
  • Agustín S´nchez-Lavega


Moist convective storms might be a key constituent of the global energy budget in the atmospheres of the Giant Planets. The storms extract their energy from the release of latent heat produced in the condensation of water which is only abundant hundreds of kilometers below the observable cloud deck. Because these atmospheres are made of hydrogen and helium, dry air is lighter than moist parcels, providing a strong stabilization against vertical motions in the atmosphere. However, very large-scale convective storms have been observed in the atmospheres of the giant planets. Among them, Jupiter is the most convectively active, showing frequent storms with sizes on the order of 3000 km that occasionally trigger planetary scale disturbances. Observations from Voyager, Galileo and Cassini spacecrafts confirm the overall convective activity of Jupiter through observations of lightning flashes below the upper ammonia cloud deck. The energy associated to these storms is large enough to constitute a relevant fraction of the total internal heat source of the planet. Although Saturn presents a more quiescent atmosphere where storms are rarely observed, about once every 30 years, a giant storm has been observed to develop with sizes of 20000 km also triggering a planetary scale disturbance. We will review the current observational background of these giant storms in both Jupiter and Saturn presenting also numerical results obtained by different teams in simulating this vigorous meteorology. In both planets water storms may develop upward velocities of 50-150 m/s. The interaction of the storms with the powerful winds are not clear. In Saturn the giant storm of 1990 could have played a key role in originating the recently discovered change of 200 m/s in the broad and intense equatorial jet.


Water Storm Giant Planet Convective Storm Cassini Spacecraft Storm Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnet, C.D., J.A. Westphal, R.F. Beebe & L.F. Huber, 1992, Icarus, 100, 499CrossRefADSGoogle Scholar
  2. Gierasch, P.J., A.P. Ingersoll, D. Banfield, S.P. Ewald, P. Helfenstein, A. Simon-Miller, A. Vasavada, H.H. Breneman, D.A. Senske, & the Galileo SSI Team, 2000, Nature, 403, 628CrossRefADSGoogle Scholar
  3. Hueso, R.,& A. Sánchez-Lavega, 2001, Icarus, 151, 257CrossRefADSGoogle Scholar
  4. Hueso, R.,& A. Sánchez-Lavega, 2002, JGR: Planets, 107, E10, DOI 10.1029/2001JE001839Google Scholar
  5. Hueso, R.,& A. Sánchez-Lavega, 2004, Icarus, in pressGoogle Scholar
  6. Ingersoll, A.P., P.J. Gierasch, D. Banfield, A.R. Vasavada,& the Galileo SSI Team, 2000, Nature, 403, 630CrossRefADSGoogle Scholar
  7. Little, B., C.D. Anger, A.P. Ingersoll, A.R. Vasavada, D.A. Senske, H.H. Breneman, W.J. Borucki & the Galileo SSI Team, 1999, Icarus 142, 306.CrossRefADSGoogle Scholar
  8. Sánchez-Lavega, A., 1982, Icarus, 49, 1ADSCrossRefGoogle Scholar
  9. Sánchez-Lavega, A.& E. Battaner, 1987, A&A, 185, 315ADSGoogle Scholar
  10. Sánchez-Lavega, A., F. Colas, J. Lecachjeux, P. Laques, D. Parker & I. Miyazaki, 1991, Nature, 343, 397CrossRefGoogle Scholar
  11. Sánchez-Lavega, A., J.M. Gómez, J. Lecacheux, F. Colas, I. Miyazaki, D. Parker& J. Guarro, 1996, Icarus, 121, 18ADSCrossRefGoogle Scholar
  12. Sánchez-Lavega, A., J.F Rojas& P.V. Sada, 2000, Icarus, 147, 405ADSCrossRefGoogle Scholar
  13. Sánchez-Lavega, A., S. Pérez-Hoyos, J.F. Rojas, R. Hueso & R.G. French, 2003, Nature, 423, 623CrossRefADSGoogle Scholar
  14. Sánchez-Lavega, A., S. Pérez-Hoyos & R. Hueso, 2004a, American Journal of Physics,72, 767CrossRefADSGoogle Scholar
  15. Sánchez-Lavega, A., R. Hueso, S. Pérez-Hoyos, J.F. Rojas & R.G. French, 2004b, Icarus, 170, 519ADSCrossRefGoogle Scholar
  16. Stoker, C.R., 1986, Icarus, 67, 106CrossRefADSGoogle Scholar
  17. Stoker, C.R., & O.B. Toon, 1989, Geophysical Research Letters, 16, 929ADSCrossRefGoogle Scholar
  18. Yair, Y., Z. Levin, & S. Tzivion, 1992, Icarus, 98, 72CrossRefADSGoogle Scholar
  19. Yair, Y., Z. Levin, & S. Tzivion, 1995, Icarus, 114, 278CrossRefADSGoogle Scholar
  20. Weidenschilling, S.J. & J.S. Lewis, 1973, Icarus, 20, 465CrossRefADSGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Ricardo Hueso
    • 1
  • Agustín S´nchez-Lavega
    • 1
  1. 1.Física Aplicada I, E.T.S. Ing.Universidad del País VascoBilbaoSpain

Personalised recommendations