Metal-substituted Bacteriochlorophylls: Novel Molecular Tools

  • Roie Yerushalmi
  • Idan Ashur
  • Avigdor Scherz

Abstract

Chromophore molecules have fascinated scientists for decades. As early as 1903, chlorophylls were analyzed by chromatography, a newly introduced technique at that time (Tswett, 1906). Ever since, porphyrins and hydroporphyrins and their metal complexes, such as chlorophylls and bacteriochlorophylls, have been studied extensively in the context of their roles in photosynthesis, as biological model systems, and recently, as promising sensitizers for photodynamic therapy. When increasing ring saturation from the D4h porphyrin macrocycle symmetry to the less symmetrical hydroporphyrins (together with an additional isocyclic ring), a wealth of possibilities for experimental observations of increasing complexity and detail became available. The synergistic link between theoretical and experimental approaches has advanced not only the understanding of various (bacterio)chlorophyll functions, but has also provided tools for exploring other complex electronic systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alden RG, Parson WW, Chu ZT and Warshel A (1996) Macroscopic and microscopic estimates of the energetics of charge separation in bacterial reaction centers. In: Michel-Byerle (ed) Reaction Centers of Photosynthetic Bacteria: Structure and Dynamics, pp 105–116. Springer-Verlag, BerlinGoogle Scholar
  2. Ashur I, Brandis A, Greenwald M, Vakrat-Hagalili Y, Rosen-bach-Belkin V, Scheer H and Scherz A (2003) Control of redox transitions and oxygen species binding in Mn centers by biologically significant ligands; Model studies with [Mn]-bacteriochlorophyll a. J Am Chem Soc 125:8852–8861PubMedCrossRefGoogle Scholar
  3. Atzenhofer W, Regelsberger G, Jacob U, Peschek GA, Furtmuller PG, Huber R and Obinger C (2002) The 2.0 angstrom resolution structure of the catalytic portion of a cyanobacterial membrane-bound manganese Superoxide disimitase. J Mol Biol 321:479–489PubMedCrossRefGoogle Scholar
  4. Beems EM, Dubbelman TMAR, Lugtenburg J, Vanbest JA, Smeets MFMA and Boegheim JPJ (1987) Photosensitizing properties of Bacteriochlorophyllin-a and Bacteriochlorin-a, 2 derivatives of Bacteriochlorophyll-a. Photochem Photobiol 46:639–643PubMedGoogle Scholar
  5. Bergman D and Hinze J (1996) Electronegativity and molecular properties. Angew Chem Int Ed 35:150–163CrossRefGoogle Scholar
  6. Besler BH, Merz KM and Kollman PA (1990) Atomic charges derived from semiempirical methods. J Comput Chem 11: 431–39CrossRefGoogle Scholar
  7. Boucher LJ and Day VW (1977) Manganese Schiff-Base complexes 5. Synthesis and spectroscopy of some anion complexes on N, N'ethylenebis(Acetylacetone Iminato)Manganese(III). Inorg Chem 16:1360–1367CrossRefGoogle Scholar
  8. Brereton RG and Sanders JKM (1983) Bacteriochlorophyll a—Influence of axial coordination on reactivity and stability —design of an improved extraction procedure. J Chem Soc Perk T (I) 2:431–434CrossRefGoogle Scholar
  9. Brunold TC, Gamelin DR, Stemmler TL, Mandai SK, Armstrong, WH, Penner-Hahn, JE and Solomon, El (1998) Spectroscopic studies of oxidized manganese catatase and mu-oxo-bridged dimanganese(III) model complexes: Electronic structure of the active site and its relation to catalysis. J Am Chem Soc 120:8724–8738CrossRefGoogle Scholar
  10. Chen YH, Graham A, Potter W, Morgan J, Vaughan L, Bellnier DA, Henderson BW, Oseroff A, Dougherty TJ and Pandey RK (2002) Bacteriopurpurinimides: Highly stable and potent photosensitizers for photodynamic therapy. J Med Chem 45:255–258PubMedCrossRefGoogle Scholar
  11. Chirlian LE and Francl MM (1987) Atomic charges derived from electrostatic potentials: A detailed study. J Comput Chem 8:894–905CrossRefGoogle Scholar
  12. Christianson DW (1997) Structural chemistry and biology of manganese metalloenzymes. Prog Biophys Mol Bio 67:217–252CrossRefGoogle Scholar
  13. Christoffersen RE (1972) Ab initio calculations on large molecules. Adv Quant Chem 6:333–393CrossRefGoogle Scholar
  14. Cioslowski J and Stefanov BB (1993) Electron flow and electronegativity equalization in the process of bond formation. J Chem Phys 99:5151–5162CrossRefGoogle Scholar
  15. Dismukes GC (1996) Manganese enzymes with binuclear active sites. Chem Rev 96:2909–2926PubMedCrossRefGoogle Scholar
  16. Edwards WD and Zerner MC (1983) Electronic-structure of model chlorophyll systems. Int J Quant Chem 23:1407–1432CrossRefGoogle Scholar
  17. Facelli JC (1998) Density functional theory calculations of the structure and the N-15 and C-13 chemical shifts of methyl bacteriopheophorbide a and bacteriochlorophyll a. J Phys Chem B 102:2111–2116CrossRefGoogle Scholar
  18. Farber G, Keller W, kratky C, Jaun B, Pfaltz A, Spinner C, Kobelt A and Eschenmoser A (1991) Coenzyme F430 from methanogenic bacteria — complete assignment of configuration based on an X-ray-analysis of 12,13-Diepi-F430 pentamethyl ester and on NMR-spectroscopy. Helv Chim Acta 74:697–716CrossRefGoogle Scholar
  19. Farid RS, Moser CC and Dutton PL (1993) Electron-transfer in proteins. Curr Opin Struct Biol 3:225–233CrossRefGoogle Scholar
  20. Fiedor L, Rosenbachbelkin V, Sai M and Scherz A (1996) Preparation of tetrapyrrole-amino acid covalent complexes. Plant Physiol Biochem 34:393–398Google Scholar
  21. Fiedor L, Leupold D, Teuchner K, Voigt B, Hunter CN, Scherz A and Scheer H (2001) Excitation trap approach to analyze size and pigment-pigment coupling: Reconstitution of LH1 antenna of Rhodobacter sphaeroides with Ni-substituted bacteriochlorophyll. Biochemistry 40:3737–3747PubMedCrossRefGoogle Scholar
  22. Fluckiger S, Mittl PRE, Scapozza L, Fijten H, Folkers G, Grutter MG, Blaser K and Crameri R (2002) Comparison of the crystal structures of the human manganese Superoxide dismutase and the homologous Aspergillus fumigatus allergen at 2-angstrom resolution. J Immunol 168:1267–1272PubMedGoogle Scholar
  23. Försterling HD and Kuhn H (1968) Projected electron density method of pi-electron systems II. Excited states. Int J Quant Chem 2:413–430CrossRefGoogle Scholar
  24. Försterling HD, Huber H and Kuhn H (1967) Projected electron density method of pi-electron systems. I. Electron distribution in the ground state. Int J Quant Chem 1:225–241CrossRefGoogle Scholar
  25. Furenlid LR, Renner MW and Fajer J (1990) EXAFS studies of Nickel(II) and Nickel(I) factor 430 M. Conformational flexibility of the F430 skeleton. J Am Chem Soc 112:8987–8989CrossRefGoogle Scholar
  26. Geskes C, Hartwich G, Scheer H, Mantele W and Heinze J (1995) An electrochemical and spectroelectrochemical investigation of metal-substituted bacteriochlorophyll a. J Am Chem Soc 117:7776–7783CrossRefGoogle Scholar
  27. Gouterman M (1959) Study of the effects of substitution on the absorption spectra of porphyrin. J Chem Phys 30:1139–1161CrossRefGoogle Scholar
  28. Gouterman M (1961) Spectra of porphyrins. J Mol Spectrosc 6:138–163CrossRefGoogle Scholar
  29. Gouterman M, Wagniere GH and Snyder LC (1963) Spectra of porphyrins. Part II. Four orbital model. J Mol Spectrosc 11:108–127CrossRefGoogle Scholar
  30. Grabarse W, Mahlert F, Duin EC, Goubeaud M, Shima S, Thauer RK, Lamzin V and Ermler U (2001) On the mechanism of biological methane formation: Structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding. J Mol Biol 309:315–330PubMedCrossRefGoogle Scholar
  31. Han WG, Lovell T and Noodleman L (2002) Coupled redox potentials in manganese and iron Superoxide disimilases from reaction kinetics and density functional/electrostatics calculations. Inorg Chem 41:205–218PubMedCrossRefGoogle Scholar
  32. Hanson LK (1991) Molecular orbital theory of monomer pigments. In: Scheer H (ed) Chlorophylls, pp 993–1014. CRC press, Boca RatonGoogle Scholar
  33. Hartwich G, Friese M, Scheer H, Ogrodnik A and Michel Beyerle ME (1995)Ultrafast internal-conversion in 13(2)-OH-Ni-Bacteriochlorophyll in reaction centers of Rhodobacter-sphaeroides R26. Chem Phys 197:423–434CrossRefGoogle Scholar
  34. Hartwich G, Fiedor L, Simonin I, Cmiel E, Schafer W, Noy D, Scherz A and Scheer H (1998a) Metal-substituted bacteriochlorophylls. 1. Preparation and influence of metal and coordination on spectra. J Am Chem Soc 120:3675–3683CrossRefGoogle Scholar
  35. Hartwich G, Scheer H and Michel-Beyerle ME (1998b) Electron transfer in modified bacterial photosynthetic reaction centers. Abstr Pap Am Chem S 215: U217–U217Google Scholar
  36. Hughes JM, Hutter MC, Reimers JR and Hush NS (2001) Modeling the bacterial photosynthetic reaction center. 4. The structural, electrochemical, and hydrogen-bonding properties of 22 mutants of Rhodobacter sphaeroides. J Am Chem Soc 123:8550–8563PubMedCrossRefGoogle Scholar
  37. Hynninen PH (1991) Chemistry of chlorophylls: Modifications. In: Scheer H (ed) Chlorophylls, pp 145–209. CRC press, Boca RatonGoogle Scholar
  38. Hynninen PH and Hyvärinen K (2002) Tracing the allomerization pathways of chlorophylls by O-18-labeling and mass spectrometry. J Org Chem 67:4055–4061PubMedCrossRefGoogle Scholar
  39. Kozyrev AN, Zheng G, Zhu CF, Dougherty TJ, Smith KM and Pandey RK (1996) Syntheses of stable bacteriochlorophyll-a derivatives as potential photosensitizers for photodynamic therapy. Tetrahedron Lett 37:6431–6434CrossRefGoogle Scholar
  40. Krueger BP, Scholes GD andFleming GR (1998) Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J Phys Chem B 102:5378–5386CrossRefGoogle Scholar
  41. Kuhn H (1951) Elektronengasmodell zur quantitativen Deutung der Licht-absorption von organischen Farbstoffen II. Helv Chim Acta 34:2371–2402CrossRefGoogle Scholar
  42. Lever ABP, Wilshire JP and Quan SK (1977) A Manganese Phthalocyanine-dioxygen molecular adduct. J Am Chem Soc 101:3668–3669CrossRefGoogle Scholar
  43. Loach PA and Calvin M (1964) Oxidation states of manganese methyl phaeophorbide alpha in aqueous solution. Nature 202:343CrossRefGoogle Scholar
  44. Longuet-Higgins HC, Rector CW and Platt JR (1950) Molecular orbital calculations on porphine and tetrahydroporphine. J Chem Phys 18:1174–1181CrossRefGoogle Scholar
  45. Lubitz W, Lendzian F and Bittl R (2002) Radicals, radical pairs and triplet states in photosynthesis. Acc Chem Res 35:313–320PubMedCrossRefGoogle Scholar
  46. Mercer IP, Gould IR and Klug DR (1999) A quantum mechanical/molecular mechanical approach to relaxation dynamics: Calculation of the optical properties of solvated bacteriochlorophyl-a. J Phys Chem B 103:7720–7727CrossRefGoogle Scholar
  47. Michel-Beyerle ME (1990) Reaction centers of photosynthetic bacteria. In: Springer Series Biophysics, 6. Springer-Verlag, BerlinGoogle Scholar
  48. Mironov AF, Kozyrev AN and Brandis A (1993) Sensitizers of second generation for photodynamic therapy of cancer based on chlorophyll and bacteriochlorophyll derivatives. In: Korppi-Tommola (ed) Laser Study of Macroscopic Biosystems, SPIE Proceedings, Vol 1922, pp 204–208. International Society for Optical EngineeringGoogle Scholar
  49. Müller P, Hartwich G, Ogrodnik A and Michel-Beyerle ME (1999) Novel multipulse saturation spectroscopy for quantum yield determination of charge separation in modified photosynthetic reaction centers. Chem Phys Lett 306:239–248CrossRefGoogle Scholar
  50. Noy D, Fiedor L, Hartwich G, Scheer H and Scherz A (1998) Metal-substituted Bacteriochlorophylls: II. Changes in redox potentials and electronic transition energies are dominated by intramolecular electrostatic interactions. J Am Chem Soc 120:3684–3693CrossRefGoogle Scholar
  51. Noy D, Yerushalmi R, Brumfeld V Ashur I, Baldridge KK, Scheer H and Scherz A (2000) Optical absorption and computational studies of [Ni]-Bacteriochlorophyll-a provide a new insight into charge distribution between metal and ligands. J Am Chem Soc 122; 3937–3944CrossRefGoogle Scholar
  52. Pandey RK and Zheng G (2000) Porphyrins as photosensitizers in photodynamic therapy. In: KM Kadish, KM Smith and R Guilard (eds) The Porphyrin Handbook, pp 157–230. Academic Press, San DiegoGoogle Scholar
  53. Parr RG and Pearson RG (1983) Absolute hardness: Companion parameter to absolute electronegativity. J Am Chem Soc, 105:7512–7516CrossRefGoogle Scholar
  54. Parr RG, Donnely RA, Levy M and Palke WE (1978) Electronegativity: The density functional viewpoint. J Chem Phys 68:3801–3807CrossRefGoogle Scholar
  55. Pearson, RG (1988) Absolute electronegativity and hardness: Application to inorganic chemistry. Inorg Chem, 27:734–740CrossRefGoogle Scholar
  56. Pennington FC, Boyd SD, Horton H, Taylor SW, Wulf DG, Katz JJ and Strain HH (1967) Reaction of Chlorophylls a and b with amines. Isocyclic ring rupture and formation of substituted chlorin-6-amides. J Am Chem Soc 89:3871–3875CrossRefGoogle Scholar
  57. Perdew JP, Parr RG, Levy M and Balduz JL (1982) Density-functional theory for fractional particle number: Derivative discontinuities of the energy. Phys Rev Lett 49:1691–1694CrossRefGoogle Scholar
  58. Petke JD, Maggiora GM, Shipman LL and Christoffersen RE (1978) Stereoelectronic properties of photosynthetic and related systems—Ab initio configuration interaction calculations on ground and lower excited singlet and triplet-states of magnesium chlorin and chlorin. J Mol Spect 73:311–331CrossRefGoogle Scholar
  59. Petke JD, Maggiora GM, Shipman LL and Christoffersen RE (1980a) Stereoelectronic properties of photosynthetic and related systems.7. Ab initio Quantum-Mechanical characterization of the electronic-structure and spectra of chlorophyl-lide-a and bacteriochlorophyllide-a cation radicals. Photochem Photobiol 31:243–257Google Scholar
  60. Petke JD, Maggiora GM, Shipman LL and Christoffersen RE (1980b) Stereoelectronic properties of photosynthetic and related systems-VI. ab-initio configuration interaction calculations on the ground and lower excited singlet and triplet states of ethyl bacteriochlorophyllide a and ethyl bacteriopheophorbide a. Photochem Photobiol 32:399–414Google Scholar
  61. Platt JR (1950) Molecular orbital predictions of organic spectra. J Chem Phys 18:1168–1173CrossRefGoogle Scholar
  62. Pople JA and Beveridge DL (1970) Approximate Molecular Orbital Theory. McGraw-Hill, New York.Google Scholar
  63. Reed AE, Curtiss LA and Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926CrossRefGoogle Scholar
  64. Rosenbach Belkin V Chen L, Fiedor L, Tregub I, Pavlotsky F, Brumfeld V, Salomon Y and Scherz A (1996) Serine conjugates of chlorophyll and bacteriochlorophyll: Photocytotoxicity in vitro and tissue distribution in mice bearing melanoma tumors. Photochem Photobiol 64:174–181PubMedGoogle Scholar
  65. Sanderson RT (1955) Partial charges on atoms in organic compounds. Science 121:207–210CrossRefPubMedGoogle Scholar
  66. Sanderson RT (1976) Chemical Bonds and Bond Energy. Academic Press, New YorkGoogle Scholar
  67. Scheer H (1991) Chemistry of Chlorophylls. In: Scheer H (ed) Chlorophylls, pp 3–30. CRC press, Boca RatonGoogle Scholar
  68. Scheer H, Kammhuber N, Scherz A, Salomon Y and Brandis A (2001) Synthesis and photodynamic activity of chlorophyll and bacteriochlorophyll esters. PCT Int. Appl. WO/040232, 48 ppGoogle Scholar
  69. Scherer POJ and Fischer SF (1989) Quantum treatment of the optical-spectra and the initial electron-transfer process with the reaction renter of Rhodopseudomonas viridis. Chem Phys 131:115–127CrossRefGoogle Scholar
  70. Scherer POJ and Fischer SF (1990) Electronic excitations and electron transfer coupling within the bacterial reaction center based on an INDO/S-CI supermolecule approach including 615 atoms. Jerusalem Symposia on Quantum Chemistry and Biochemistry: pp 361–370Google Scholar
  71. Scherz A and Levanon H (1985) Optical-transition energies of porphyrins - the application of Free-Electron Molecular-Orbital approach. Mol Phys 55:923–937CrossRefGoogle Scholar
  72. Scherz A, Salomon Y, Fiedor L and Brandis A (1998a) Chlorophyll and bacteriochlorophyll derivatives, their preparation and pharmaceutical compositions comprising them. US Pat. Application: No. 6147195Google Scholar
  73. Scherz A, Salomon Y, Scheer H, Hartwich G and Brandis A (1998b) Synthetic metal-substituted bacteriochlorophyll derivatives and use thereof. PCT Int. Appl. WO/19081, 36 ppGoogle Scholar
  74. Scherz A, Solomon Y, Brandis A and Scheer H (2000) Palladium- substituted bacteriochlorophyll derivatives and use thereof. PCT Int. Appl. WO/0033833, 59 ppGoogle Scholar
  75. Scherz A, Brandis A, Mazor O, Salomon Y and Scheer H (2002) Water-soluble Bacteriochlorophyll derivatives and their pharmaceutical uses. PCT Int. Appl WO/045592, 36 ppGoogle Scholar
  76. Scholes GD, Gould IR, Cogdell RJ and Fleming GR (1999) Ab initio molecular orbital calculations of electronic couplings in the LH2 bacterial light-harvesting complex of Rps-acidophila. J Phys Chem B 103:2543–2553CrossRefGoogle Scholar
  77. Seely GR (1966) The structure and chemistry of functional groups. In: LP Vernon and GR Seely (eds) The Chlorophylls, pp 67–110. Academic Press, New YorkGoogle Scholar
  78. Senge MO (1992) The conformational flexibility of tetrapyrroles — current model studies and photobiological relevance. J Photochem Photobiol B 16:3–36CrossRefGoogle Scholar
  79. Shiemke AK, Kaplan WA, Hamilton CL, Shelnutt JA and Scott RA (1989) Structural and spectroscopic characterization of exogenous ligand-binding to isolated Factor-F430 and its configurational isomers. J Biol Chem 264:7276–7284PubMedGoogle Scholar
  80. Shipman LL (1982) Electronic structure and function of chlorophylls and their pheophytins. In: Govindjee (ed) Photosynthesis. Academic Press, New YorkGoogle Scholar
  81. Simpson WT (1949) The theory of pi-electron system in porphines. J Chem Phys 17:1218–1221CrossRefGoogle Scholar
  82. Smith JRL and Calvin M (1966) Studies on chemical and photochemical oxidation of Bacteriochlorophyll. J Am Chem Soc 88; 4500–4506CrossRefGoogle Scholar
  83. Streitwieser Jr A (1961) Molecular Orbital Theory for Organic Chemists. John Wiley, New YorkGoogle Scholar
  84. Struck A, Cmiel E, Katheder I, Schäfer W and Scheer H (1992) Bacteriochlorophylls modified at position C-3 — long-range intramolecular interaction with position C-13.2. Biochim Biophys Acta 1101:321–328CrossRefGoogle Scholar
  85. Telser J, Davydov R, Horng YC, Ragsdale SW and Hoffman BM (2001) Cryoreduction of methyl-coenzyme M reductase EPR characterization of forms, MCRox 1 and MCRred 1. J Am Chem Soc 123:5853–5860PubMedCrossRefGoogle Scholar
  86. Teuchner K, Stiel H, Leupold D, Scherz A, Noy D, Simonin I, Hartwich G and Scheer H (1997) Fluorescence and excited state absorption in modified pigments of bacterial photosynthesis— A comparative study of metal-substituted bacteriochlorophylls a. J Lumin 72–4:612–614CrossRefGoogle Scholar
  87. Thompson MA and Fajer J (1992) Calculation of bacteriochlorophyll g primary donors in photosynthetic heliobacteria. How to shift the energy of a phototrap by 2000 cm-1. J Phys Chem 96:2933–2935CrossRefGoogle Scholar
  88. Thompson MA and Zerner MC (1991) A theoretical examination of the electronic structure and spectroscopy of photosynthetic reaction center from Rhodopseudomonas viridis. J Am Chem Soc 113:8210–8215CrossRefGoogle Scholar
  89. Tswett M (1906) Adsorptionanalyse und Chromatographiische Methode. Ber Deut Bot Ges 24:384–393Google Scholar
  90. Uchida K, Naito S, Soma M, Onishi T and Tamaru K (1978) New dioxygen complex of manganese phthalocyanine. J Chem Soc Chem Comm 6:217–218CrossRefGoogle Scholar
  91. Vakrat Y, Weiner L, Brandis A, Mazor O, Kami R, Gross S, Schreiber S, Salomon Y and Scherz A (1999) Bacteriochlorophyll derivatives: Phototoxicity, hyrophobicity and oxygen radicals production. Free Radical Bio Med 27: S129–S129Google Scholar
  92. Vance CK and Miller AF (1998) Simple proposal that can explain the inactivity of metal-substituted Superoxide dismutases. J Am Chem Soc 120:461–467CrossRefGoogle Scholar
  93. Wakao N, Yokoi N, Isoyama N, Hiraishi A, Shimada K, Kobayashi M, Kise H, Iwaki M, Itoh S, Takaichi S and Sakurai Y (1996) Discovery of natural photosynthesis using Zn-containing bacteriochlorophyll in an aerobic bacterium Acidiphilium rubrum. Plant Cell Physiol 37:889–893Google Scholar
  94. Warshel A and Parson WW (1987) Spectroscopic properties of photosynthetic reaction centers. 1. Theory. J Am Chem Soc 109:6143–6152CrossRefGoogle Scholar
  95. Whittaker JW (2002) Prokaryotic manganese Superoxide dismutases. Method Enzymol 349:80–90Google Scholar
  96. Wiberg KB, Hadad CM, Breneman CM, Laidig KE, Murcko MA and Lepage TJ (1991) The response of electrons to structural changes. Science 252:1266–1272CrossRefPubMedGoogle Scholar
  97. Woolley PS, Moir AJ, Hester RE and Keely BJ (1998) A comparative study of the allomerization reaction of chlorophyll a and bacteriochlorophyll a. J Chem Soc Perk T(II) 8:1833–1839CrossRefGoogle Scholar
  98. Yerushalmi R (1999) Effects of axial ligands on the electronic structure and redox potentials of nickel bacteriochlorophyll-a; the groundwork of a molecular potentiometer. M.Sc. thesis, The Weizmann Institute of Science, Rehovot, IsraelGoogle Scholar
  99. Yerushalmi R and Scherz A (2002) Synthetic Molecular Spring Device. WO/02073062Google Scholar
  100. Yerushalmi R, Noy D, Baldridge KK and Scherz A (2002) Mutual control of axial and equatorial ligands: Model studies with [Ni]- Bacteriochlorophyll-a. J Am Chem Soc 124:8406–8415PubMedCrossRefGoogle Scholar
  101. Yerushalmi R, Baldridge KK and Scherz A (2003) An experimental look into sub-electron charge flow. J Am Chem Soc 125:12706–12707PubMedCrossRefGoogle Scholar
  102. Yerushalmi R, Scherz A and Baldridge KK (2004) Direct experimental evaluation of charge schemes performance by a molecular charge-meter. J Am Chem Soc 126:5897–5905PubMedCrossRefGoogle Scholar
  103. Zerner M and Gouterman M (1966) Porphyrins IV. Extended Hückel calculations on transition metal complexes. Theo Chim Acta 4:44–63CrossRefGoogle Scholar
  104. Zhang LY and Friesner RA (1998) Ab initio calculation of electronic coupling in the photosynthetic reaction center. Proc Natl Acad Sci USA 95:13603–13605PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Roie Yerushalmi
    • 1
  • Idan Ashur
    • 1
  • Avigdor Scherz
    • 1
  1. 1.Department of Plant SciencesThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations