Beyond Bloom’s Taxonomy: Rethinking Knowledge for the Knowledge Age

  • Carl Bereiter
  • Marlene Scardamalia


This chapter focuses on how schools could function as places where students become proficient in all aspects of knowledge, including its creation. Traditional forms of knowledge are inadequate because they are based on “mental filing cabinets”. New conceptions are based on enabling learners to construct knowledge drawing on a range of information enabling them to obtain greater depths of understanding which they can apply in new situations.


Knowledge Work Knowledge Object Knowledge Society Mental Content Educational Objective 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J. R. (1993). Rules of the mind. Cambridge, MA: MIT Press.Google Scholar
  2. Astington, J. W. (1993). The child’s discovery of the mind. Cambridge, MA: Harvard University Press.Google Scholar
  3. Bechtel, W., & Abrahamsen, A. A. (1991). Beyond the exclusively propositional era. In J. H. Fetzer (Ed.), Epistemology and cognition (pp. 121–151). Dordrecht: Kluwer Academic Publishers.Google Scholar
  4. Bereiter, C. (1991). Implications of connectionism for thinking about rules. Educational Researcher, 20, 10–16.Google Scholar
  5. Bereiter, C., & Scardamalia, M. (1987). The psychology of written composition. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  6. Bereiter, C., & Scardamalia, M. (1993). Surpassing ourselves: An inquiry into the nature and implications of expertise. La Salle, IL: Open Court.Google Scholar
  7. Bereiter, C., & Scardamalia, M. (1996). Rethinking learning. In D. R. Olson &. N. Torrance (Eds.), Handbook of education and human development: New models of learning, teaching and schooling Cambridge, MA: Basil Blackwell.Google Scholar
  8. Bloom, B. S. (Ed.). (1956). Taxonomy of educational objectives: Handbook 1. Cognitive domain. New York: David McKay Company, Inc.Google Scholar
  9. Bruner, J. S. (1990). Acts of meaning. Cambridge, MA: Harvard University Press.Google Scholar
  10. Case, R. (1985). Intellectual development: Birth to adulthood. Orlando, FL: Academic Press.Google Scholar
  11. Case, R. (1992). The mind’s staircase: Exploring the conceptual underpinnings of children’s thought and knowledge. Hillsdale, NJ: Erlbaum.Google Scholar
  12. Charness, N. (1991). Expertise in chess: The balance between knowledge and search. In K. A. Ericsson & J. Smith (Eds.), Toward a general theory of expertise: Prospects and limits (pp. 39–63). Cambridge: Cambridge University Press.Google Scholar
  13. Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4, 55–81.CrossRefGoogle Scholar
  14. Chi, M. T. H., Glaser, R., & Farr, M. (Ed.). (1988). The nature of expertise. Hillsdale, NJ: Erlbaum.Google Scholar
  15. Churchland, P. S. (1986). Neurophilosophy: Toward a unified science of the mind-brain. Cambridge, MA: MIT Press.Google Scholar
  16. Drucker, P. F. (1993). Post-capitalist society. New York: HarperCollins.Google Scholar
  17. Egan, K. (1979). Educational development. New York: Oxford University Press.Google Scholar
  18. Fischer, K. W. (1980). A theory of cognitive development: Control and construction of hierarchies of skills. Psychological Review, 87, 477–531.CrossRefGoogle Scholar
  19. Flower, L. S. (1979). Writer-based prose: A cognitive basis for problems in writing. College English, 41, 19–37.CrossRefGoogle Scholar
  20. Graves, D. R. (1983). Writing: Teachers and children at work. Exeter, NH: Heinemann Educational Books.Google Scholar
  21. Harré., R., & Gillett, G. (1994). The discursive mind. Thousand Oaks, CA: Sage Publications.Google Scholar
  22. Hirschfeld, L. A., & Gelman, S. A. (Eds.). (1994). Mapping the mind: Domain specificity in cognition and culture. New York: Cambridge University Press.Google Scholar
  23. Hunt, E., & Minstrell, J. (1994). A cognitive approach to the teaching of physics. In K. McGilley (Ed.), Classroom lessons: Integrating cognitive theory and classroom practice. (pp. 51–74). Cambridge, MA: MIT Press.Google Scholar
  24. Karmiloff-Smith, A. (1992). Beyond modularity: A developmental perspective on cognitive science. Cambridge, MA: MIT Press.Google Scholar
  25. Keil, F. C. (1989). Concepts, kinds, and cognitive development. Cambridge, MA: Bradford/MIT Press.Google Scholar
  26. Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago, IL: University of Chicago Press.Google Scholar
  27. Lesgold, A. M., & Lajoie, S. (1991). Complex problem solving in electronics. In R. J. Sternberg & P. A. Frensch (Eds.), Complex problem solving: Principles and mechanisms (pp. 287–316). Hillsdale, NJ: Erlbaum.Google Scholar
  28. Margolis, H. (1987). Patterns, thinking, and cognition. Chicago: University of Chicago Press.Google Scholar
  29. Marjoram, D. T. E. (1987). Chess and gifted children. Gifted Education International, 5, 48–51.Google Scholar
  30. New Standards. (1995). Performance standards: English language arts, mathematics, science, applied learning. Rochester, NY: National Center on Education and the Economy.Google Scholar
  31. Ohlsson, S. (1993). Abstract schemas. Educational Psychologist, 28(1), 51–66.CrossRefGoogle Scholar
  32. Olson, D. R. (1994). The world on paper: The conceptual and cognitive implications of writing and reading. New York: Cambridge University Press.Google Scholar
  33. Ontario, Ministry of Education and Training. (1993). The common curriculum, grades 1–9, working document. Toronto: Publications Ontario.Google Scholar
  34. Scardamalia, M., & Bereiter, C. (1994). Computer support for knowledge-building communities. The Journal of the Learning Sciences, 3(3), 265–283.CrossRefGoogle Scholar
  35. Scardamalia, M., & Bereiter, C. (1996). Adaptation and understanding: A case for new cultures in schooling. In S. Vosniadou, E. de Corte, R. Glaser & H. Mandl (Eds) International perspectives on the psychological foundations of technology-based learning environments. (pp. 149–163). Mohwah, N.J: Laurence Erlbaum Associates.Google Scholar
  36. Scardamalia, M., Bereiter, C., & Lamon M. (1994). CSILE: Trying to bring students into world 3. In K. McGilley (Ed.), Classroom lessons: Integrating cognitive theory and classroom practice (pp. 201–228). Cambridge, MA: MIT Press.Google Scholar
  37. Scardamalia, M., Bereiter, C., Hewitt, J., & Webb, J. (in press). Constructive learning from texts in biology. In K. M. Fischer & M. Kirby (Eds.), Relations and biology learning: The acquisition and use of knowledge structures in biology. Berlin: Springer-Verlag.Google Scholar
  38. Schacter, D. L. (1989). Memory. In M. I. Posner (Ed.), Foundations of cognitive science (pp. 683–725). Cambridge, MA: MIT Press.Google Scholar
  39. Scott, P., Asoko, H., & Driver, R. (1992). Teaching for conceptual change: A review of strategies. In R. Duit, F. Goldberg, & H. Neidderer (Eds.), Research in physics learning: Theoretical issues and empirical studies Keil, Germany: Schmidt and Klannig.Google Scholar
  40. Stich, S. P. (1983). From folk psychology to cognitive science: The case against belief. Cambridge, MA: MIT Press.Google Scholar
  41. Ward, D. R, & Thiessen, E. L. (1994, August). Endangered species (Technical Report of Instructional Unit): CSILE project. Toronto: OISE.Google Scholar
  42. Whitehead, A. N. (1925, 1948). Science and the modern world (Mentor ed.). New York: New American Library.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Carl Bereiter
    • 1
  • Marlene Scardamalia
    • 1
  1. 1.Ontario Institute for Studies in Education of the University of TorontoToronto

Personalised recommendations