DISEASE RESISTANCE IN PLANTS THROUGH MYCORRHIZAL FUNGI INDUCED ALLELOCHEMICALS

  • REN-SEN ZENG
Chapter
Part of the Disease Management of Fruits and Vegetables book series (DMFV, volume 2)

Abstract

Allelochemals induced in mycorrhizal plants play an important role in disease resistance. Mycorrhizal associations are the most important symbiosis systems in terrestrial ecosystems and offer many benefits to the host plant. Arbuscular mycorrhizal associations can reduce damage caused by soil and root - borne pathogens.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Abdalla M.E., Abdel-Fattah G.M. Influence of the endomycorrhizal fungus glomus mosseae on the development of peanut pod rot disease in Egypt. Mycorrhiza 2000; 10: 29–35. CrossRefGoogle Scholar
  2. Mzcon-Aguilar C., Barea J.M. Arbuscular mycorrhizas and biological control of soil-borne plant pathogens - an overview of the mechanisms involved. Mycorrhiza 1996; 6: 457–464. CrossRefGoogle Scholar
  3. Azcon-Aguilar C., Barea J.M. Applying mycorrhizal biotechnology to horticulture: significance and potentials. Sci Hortic 1997; 68: 1–24. CrossRefGoogle Scholar
  4. Bansal, M., Chamola, B.P., Sarwar, N., Mukerji, K.G. Mycorrhizosphere : Interaction between Rhizosphere microflora and VAM fungi. In, Myocrrhizal Biology, K.G. Mukerji, B.P. Chamola, Jagjit Singh eds., Kluwer Academic/Plenum Publishers, New York, Dordrecht, London; 2000; pp. 143–152. Google Scholar
  5. Barker, S.J., Tagu, D. The role of auxins and cytokinins in mycorrhizal symbiosis. J. Plant Growth Regul 2000; 19: 144–154. PubMedGoogle Scholar
  6. Benhamou N. Elicitro-induced pant defense pathways. Trends in Plant Science 1996; 1:233–240. Google Scholar
  7. Benhamou N., Fortin J.A., Hamel C., St.-Arnaud M, Shatilla A. Resistance responses of mycorrhizal Ri TDNA transformed carrot roots to infection by Fusarium oxysporum f. sp. chrysanthemi. Phytopathology 1994; 84: 958–968. Google Scholar
  8. Bennett R.N., Wallsgrove R.M. Secondary metabolites in plant defense mechanisms. New Phytol 1994; 127:617–633. CrossRefGoogle Scholar
  9. Bodker L., Kjoller R. Rosendah S. Effect of phosophate and the arbuscular mycorrhizal fungus Glomus intraradices on disease severity of root rot of peas (Pisum sativum) caused by Aphanomyces euteiches.Mycorrhiza 1998; 8: 169–174. CrossRefGoogle Scholar
  10. Buckingham J. Dictionary of natural products on CD-ROM. Chapman & Hall, London, 1998. Google Scholar
  11. Caron M. Potential use of mycorrhizae in control of soil-borne disease. Can J Pl Pathol 1989; 11: 177–179. Google Scholar
  12. Caron M., Richard C., Fortin, J.A. Effect of prteinfestation of the soil by a vesicular-arbuscular mycorrhizal fungus, Glomus intraradices, on Fusarium crown and root rot of tomatoes. Phytoprotection. 1986; 67:15–19. Google Scholar
  13. Charitha Devi M., Readdy M.N. Phenolic acid metabolish of groundnut (Arachis hypogaea L.) plants inoculated with VAM fungus and Rhizobium. Pl Gr Regul 2002; 37: 151–156. CrossRefGoogle Scholar
  14. Conrath U., Pieterse C.M.J., Mauch Mani B. Priming in plant pathogen interactions. Trends Pl Sci 2002; 7:210–216. CrossRefGoogle Scholar
  15. Cordier C., Gianianzzi S., Gianinazzi-Perason V. Colonization patterns of root tissues by Phytophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 1996; 185: 223–232. Google Scholar
  16. Cordier C., Pozo M.J. Barea J.M., Gianinazzi S. Gianinazzi-Pearson V. Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant-Microbe Interactions 1998; 11:1017–1028. Google Scholar
  17. Cordier C., Trouvelot A., Gianinazzi S., Gianinazzi-Pearson V. Arbuscular mycorrhizal technology applied to micropropagated Prunus avium and to protection against Phytophthora cinnamomi.Agronomie 1997;17: 256–265. Google Scholar
  18. Dar G.H. Zargar M.Y. Beigh G.M. Biocontrol of Fusarium root rot in the common bean (Phaseolus vulgaris L.) byusing symbiotic Glomus mosseae and Rhizobium leguminosarum. Microb Ecol 1997; 34: 74–80. CrossRefGoogle Scholar
  19. Davis R.M., Menge J.A. Influence of Glomus fasciculatum and soil phosphorus on phytopththora root rot of citrus. Phytopathology 1980; 70:447–452. CrossRefGoogle Scholar
  20. Dehne H.W. Interaction between vesicular arbuscular mycorrhizal fungi and plant pathogens. Phytopathology 1982; 72: 1115–1119. Google Scholar
  21. Dehne, H.W., Schonbeck, F. Unterschungen Zum Einflu-β-der endotrophen Mykorrhiza auf Pflanzenkrankheiten, II. Phenol stoffwechsel and Lignitiezierung. Phytopathol Z 1979b, 19: 210–216. Google Scholar
  22. Dehne, H.W., Schonbeck, F. The infleunce of endotrophic mycorrhizae on plant disease. I colonization to tomato plants by Fusarium oxysproum f. sp. lyeopersici.Phytopatol Z 1979a; 95: 105–109. Google Scholar
  23. Dixon R.A. The phytoalexin response: elicitation, signaling and control of host gene expression. Biol Rev 1986;61: 239–291. CrossRefGoogle Scholar
  24. Dixon R.A. Natural productions and plant disease resistance. Nature 2001; 411: 843–847. PubMedCrossRefGoogle Scholar
  25. Dixon R.A. and Gerrish C. Lamb C.J., Robbins M.P. Elicitor-mediated induction of chalone isomerase in Phaseolus vulgaris cell suspension cultures. Planta 1984; 159: 561–569. CrossRefGoogle Scholar
  26. Dixon R.A. and Harrison M.J. Activation, structure and organization of genes involved in microbial defense in plants. Adv Gentics 1990; 28: 165–233. Google Scholar
  27. Dixon, R.K. The Global Carbon Cycle and Global change : Resposns and fedcdback from the Mycorrhizaosphre. In, Mycorrhizal Biology, K.G. Mukerji, B.P. Chamola, Jaggit Singh eds. Kluwer Academic/Plenum Publishers, New York, Dordrecht, London. 2000; pp. 85–100. Google Scholar
  28. Dumas-Gaudot E., Furlan V., Grenier J., Asselin A. New acidic chitinase isoforms induced in tobacco roots by vesicular-arbuscular mycorrhizal fungi. Mycorrhiza 1992a; 1: 133–136. CrossRefGoogle Scholar
  29. Dumas-Gaudot E., Renier J. Furlan V., Asselin A. Chitinase, chitosanase and b-1, 3-glucanase activites in Allium and Pisum roots colonized by Glomus species. Plant Sci 1992b; 84: 17–24. CrossRefGoogle Scholar
  30. Engström K., Widmark A.K., Brishammar S., Helmersoon S., Antifungal activity to Phytophthora infestans of sesquiterpendoids from infectd potato tyubers. Potato Res 1999; 42: 43–50. CrossRefGoogle Scholar
  31. Fester T., Maier W., Strack D. Accumulation of secondary compounds in barley and wheat roots in response to inoculation with an arbuscular mycorrhizal fungus and co-inoculation with rhizsophsere bacteria. Mycorrhiza 1999; 8: 241–246. CrossRefGoogle Scholar
  32. Fester T., Schmidt D., Lohse S., Walter M.H., Giuliano G., Bramley P.M., Fraser P.d., Hause B., Strack D. Stimualtion of carotenoid metabolism in arbuscular mycorrhizal roots. Planta 2002; 216: 148–154. PubMedCrossRefGoogle Scholar
  33. Frankenberger Jr. W.T., Arshad M. Microbial synthesis of auxins. In Phytohormones in soils, W.T. Frankberger Jr., M. Arshad eds., Marcel Deeker Inc., N.Y. 1995, pp. 35–71. Google Scholar
  34. Fyson A., Oaks A. Rapid methods for quantifying VAM fungal infections in maize roots. Plant Soil 1992; 147:317–319. CrossRefGoogle Scholar
  35. Garcia-Garrido J.M., Ocampo J.A. Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J Exp Bot 2002; 53: 1377–1386. PubMedCrossRefGoogle Scholar
  36. Gianinazzi-Pearson V. Plant Cell responses to arbuscular mycorrhizal fungi getting to the roots of the symbiosis. Plant cell 1996; 8: 1871–1883. PubMedCrossRefGoogle Scholar
  37. Giaminazzi-Pearson V., Dumas-Gaudot E., Gollote A., Tahiri-Alaoui A., Gianinazzi S. Cellular and molecular defence related root responses to invasion by arbuscular mycorrhizal fungi. New Phytol 1996; 133: 45–57. CrossRefGoogle Scholar
  38. Gianinazzi-Pearson V., Gollottee A. Dumas-Gaudo E. Franken P., Gianinazzi S. Gene expression and molecular modifications associated with plant responses to infection by arbuscular mycorrhizal fungi. In: Advnaces in molecular genetics of plantmicrobe interactions. M.J. Daniels, J.A. Downie, A.E. Obsourn. eds. Kluwer, Boston, 1994; pp. 179–186. Google Scholar
  39. Go’mez Garibay F., Reyes Chilpa R., Quijano L., Caldero’n Pardo J.S. Ray’os’Castillo T., Methoxifurans auranols with fungostatic activity from Lonchocarpus castilloi. Phytochemistry 1990; 29: 459–463. CrossRefGoogle Scholar
  40. Grayer R.J. Harborne J.B., A survey of antifungal compounds from higher plants, 1982–1993. Phytochemistry 1994; 37: 19–42. CrossRefGoogle Scholar
  41. Guenoune D., Galili S., Phillips D.A., Volpin H. Chet I., Okon Y., Kapulnik Y. The defense response elicted by the pathogen Rhizoctonia solani is suppressed by colonization of the AM-fungus Glomus intraradices. Pl Sci 2001; 160: 925–932. CrossRefGoogle Scholar
  42. Hammerschmidt R. Induced disease resistance: How do induced plants stop pathogens? Physiol Molecular Pl Pathol 1999; 55: 77–84. CrossRefGoogle Scholar
  43. Harborne J.B., Ingham J.L. Biochemical aspects of the co-evaluation of higher plants with their fungal parasites. In Biochemical Aspects of Plant and Animal Co-evaluation. J.B. Harborne. ed. Academic Press, London, 1978; 343–405. Google Scholar
  44. Harrison M.J., Dixon A. Isoflavonid accumulation and expression of defense gene transcripts during the establishment of vesicular arbuscular mycorrhizal association in roots of Medicago truncatula. Mol Plant-Microbe Interactions 1993; 6: 643–659. Google Scholar
  45. Harrison M.H., Dixon R.A. Spatial patterns of expression of flavonoid/isoflavonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme. Plant J 1994; 6: 9–20. CrossRefGoogle Scholar
  46. Hooker J.E., Jaizme-Vega M., Atkinson D. Biocontrol of plant pathogens using arbuscular mycorrhizal fungi. In : Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems. ALS, Birkhauser, Basel 1994; pp. 191–200. Google Scholar
  47. Huang J.H., Chemical mechanisms of plant disease resistance induced by arbuscular mycorrhizal fungi toward fungal pathogens. Doctoral dissertation submitted to South China Agricultural University, Guangzhou, 2003. Google Scholar
  48. Ingham E.R. Interactions among mycorrhizal fungi, rhizosphere orgnaims, and plants. In, Microbial mediation of Plant-herbivore Interactions. John Wiley and Sons, Inc. 1991; p. 530. Google Scholar
  49. Kapulink Y., Volpin H., Itzhaki H., Ganon D., Galili S., David R., Shaul O., Elad Y., Chet I., Okon Y. Supprossion of defence responses in mycorrhizal alfalfa and tobacco roots. New Phytol 1996; 133: 59–64. CrossRefGoogle Scholar
  50. Klinger A., Bothe H., Wray V., Marner F.J. Identification of a yellow pigment formed in maize roots upon mycorrhizal colonization. Photochemistry 1995; 38: 53–55. CrossRefGoogle Scholar
  51. Krishna K.R., Bagyaraj D.J. Interaction between Glomus fasciculatum and Sclerotium rolfsii in peanut. Can J Bot 1984; 61: 2349. Google Scholar
  52. Krupa S., Anderson J., Marx D.H. Studies on ectomycorrhizae of pine. IV. Volatile organic compounds in mycorrhizal and non mycorrhizal root systems of Pinus echinata Eur J For Pathol 1973; 3: 194–200. Google Scholar
  53. Lambais M.R., Mehdy M.C. Suppression of endochitinase, β-1, 3-endoglucanase and chalcone isomerase expression in bean vesicular-arbuscular mycorrhizal roots under different soil phosphate conditions. Mol Plant-Microbe Interactions 1993; 6: 75–83. Google Scholar
  54. Lambais M.R. Regulation of plant defense-related genes in arbuscular mycorrhizae. In: Current advances in mycorrhizae research.G.K. Podila, D.D. Douds eds. APS Press, Minnesota U.S.A. 2000. Google Scholar
  55. Levin D. Alkaloid-bearing plants: An ecogeographi perspective. Am Natur 1976; 110: 261–284. CrossRefGoogle Scholar
  56. Linderman R.G. Role in VAM fungi in biocontrol. In: Mycorrhiza and Plant Health, F.L. Pfleger, R.G. Linderman eds. APS Press, St. Paul, 1994; pp. 1–26. Google Scholar
  57. Lingua G. D’Agostino G. Massa N., Antosiano M., Berta G. Mycorrhiza induced differential response to a yellows disease in tomato. Mycorrhiza 2002; 12: 191–198. PubMedCrossRefGoogle Scholar
  58. Ludwig-Müller, J. Indole-3-butyric acid in plant growth and development. Plant Growth Regul 2000a; 32: 219–230. CrossRefGoogle Scholar
  59. Ludwig-Müller J. Hormonal balance in plants during colonization by mycorrhial fungi. In, Arbuscular Mycorrhizas : Physiology and function,D.D. Douds, Y. Kapulnik eds. Kluwer Academic Publishers, Dordrecht, the Netherlands. 2000b; pp. 263–285. Google Scholar
  60. Ludwig-Müller J. From auxin homeostasis to understanding plant pathogen and plant symbiont interaction : editor’s research interests JPGR 2004; 23: 1–8. Google Scholar
  61. Maier W., Hammer K. Dammann U., Schulz B., Strack D., Accumulation of sesquiterpenoid cyclohexenone dervatives induced by an arbuscular fungus in members of the Poaceae. Planta 1997; 202: 36–42. CrossRefGoogle Scholar
  62. Maier W., Peipp H., Schmidt J., Wray V., Strack D. Levels of a terpenoid glycoside (blumenin) and cell wallbound phenolics in some cereal mycorrhizas. Pl Physiol 1995; 109: 465–470. CrossRefGoogle Scholar
  63. Maier W., Schmidt J., Nimtz M., Wray V., Strcak D. Secondary products in mycorrizal roots of tobacco and tomato. Phytochemistry 2000; 54: 473–479. PubMedCrossRefGoogle Scholar
  64. Maier W., Schmidt J. Wray V., Walter M.H. Strack D. The arbuscular mycorrhizal fungus Glomus intraradices induces the accumulation of cyclohexenone derivatives in tobacco roots. Planta 1999; 207: 620–623. CrossRefGoogle Scholar
  65. Maier W., Schneier B., Strack D. Biosynthesis of sesquiterpenoid cyclohezenone derivatives in mycorrhizal barley roots proceeds via the glyceraldehydes 3-phosphate/pyruvate pathway. Tetrahedron Letter 1998; 39: 521–524. CrossRefGoogle Scholar
  66. Maronek, D.M. Mycorrhizal fungi and their importance in horticulture crop production. Hort Rev 1981; 3:172–213. Google Scholar
  67. Marx D.H. Ectomyocrrhizae as biological deterents to pathogenic root infections. Ann Rev Phytopath 1972; 10:429–441. CrossRefGoogle Scholar
  68. Matsubara Y., Tamura H., Harada T. Growth enhancement and Verticillium wilt control vesicular-arbuscular mycorrhiza fungus inoculation in eggplant. J Japan Soc Hort Sci. 1995; 555–561. Google Scholar
  69. Mauch-Mani B., Metraux J.P. Salicylic acid and systemic acquired resistance to pathogen attack. Ann Bot 1998; 82: 535–561. CrossRefGoogle Scholar
  70. Mendelsohn R., Balick M.J. The value of undiscovered pharmaceuticals in tropical forests. Eco Bot 1995; 49:223–228. Google Scholar
  71. Mohr U., Lange J., Boller T., Wiemken A., Vogeli-Lange R. Plant defence genes are induced in teh pathogenic interaction between bean roots and Fusarium solani, but not in the symbiotic interaction with the arbuscular mycorrhizal fungus Glomus mosseae. New Phytol 1998; 138: 589–598. CrossRefGoogle Scholar
  72. Morandi D. Isoflavonoid accumulation in soybean roots infected with vesicular-arbuscular mycorrhizal fungus. Physiol Pl Pathol 1984; 24: 357–364. CrossRefGoogle Scholar
  73. Morandi D. Occurrence of phytoalexins and phenolic compounds in endomyocrrhizal interactions, and their potential role in biological control. Plant Soil. 1996; 185: 241–251. CrossRefGoogle Scholar
  74. Morandi D., LeQuerre J.L. Influence of nitrogen on accumulation of isosojagol (a new deterred coumestan in soybean) and associated isoflavonoids in roots and nodules of mycorrhizal and non-mycorrhizal soybean. New Phytol 1991; 117: 75–79. CrossRefGoogle Scholar
  75. Mukerji K.G. Mycorrhiza in control of plant pathogens : Molecular approaches. In, Biotechnological Approaches in Biocontrol of Plant Pathogens, K.G. Mukerji, B.P. Chamola, R.K. Upadhyay eds. Kluwer Academic/Plenum Publishers, New York, Dordrecht, London, 1999; pp. 135–155. Google Scholar
  76. Mukerji K.G. Rhizosphere Biology. In, Techniques in Mycorrhizal Studies,K.G. Mukerji, C. Manoharachary, B.P. Chamola eds. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002; pp. 87–101. Google Scholar
  77. Mukerji K.G., Upadhyay R.K., Kaushik A. Mycorrhiza and Integrated Disease Management. In, IPM Systems in Agriculture. Vol 2. Biocontrol in Emerging Biotechnology. R.K. Upadhyay, K.G. Mukerji, R.L. Rajak eds. Aditya Books Pvt. Ltd., New Delhi, India, 1997; pp. 423–452. Google Scholar
  78. Neswham K.K., Fitter A.H. Watkinson A.R. Arbuscular mycorhriza protect an annual gras from root pathogenic fungi in the field. J Ecol 1995; 83: 991–1000. Google Scholar
  79. Niemeyer H.M. 1988. Hydroxamic acids (4-hydroxy-1, 4-benzoxazin-3-ones), defense chemicals in the GRamineae. Phytochemistry 1988; 27: 3349–3358. Google Scholar
  80. Niemira B.A., Hammerschmidt R., Sar G.R. Postharvest suppression of potato dry rot (Fusarium sambucinum) in prenuclear minitubers by arbuscular mycorrhizal fungal inoculum. An Potato J 1996; 73: 509–515. CrossRefGoogle Scholar
  81. Paxton J.D. Phytoalexins-a working redefinition. Phytopathol 1981; 101: 106–109. Google Scholar
  82. Peipp H., Maier W., Schmidt J. Wray V. Strack D. Arbuscular mycorrhizal fungus-induced changes in the accumulation of secondary compounds in barely roots. Phytochemistry 1997; 44: 581–587. CrossRefGoogle Scholar
  83. Pozo M.J., Cordier C., Dumas-Gaudot E., Gianinazzi S., Barea J.M., Azcon-Aguilar C. Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 2002; 525–534. Google Scholar
  84. Pozo M.T., Dumas-Gaudot e., Slezack S., Cordier C., Asselin A., Gianinazzi S., Gianinazzi-Pearson V., Azcon-Aguilar C., Barea J.M. Infuction of new chitinase isoforms in tomato roots during interactions with Glomus mosseae and/or Phytophthora nicotianae var parasitica. Agronomie 1996; 16: 689–697. Google Scholar
  85. Raina S., Chamola B.P., Mukerji K.G. Evolution of Mycorrhiza. In, Mycorhizal Biology,K.G. Mukerji, B.P. Chamola, J. Singh eds. Kluwer Academic / Plenum Publishers. New York, pp. 1–26. Google Scholar
  86. Ramaraj B., Shanmugam N., Reddy D.A. Biocontrol of Macrophomina root rot of cowpea and Fusarium wilt of tomato by using VAM fungi. In: Mycorrhizae for green Asia. A Mahadevan ed. Proc. 1st Asian Conf Mycorrhizae, University of Madras, Madras, India 1988; pp. 250–251. Google Scholar
  87. Rambelli A. The rhizosphere of mycorrhizae. In, Ectomycorrhizae, G.L. Marks, T.t. Koslowski eds. Academic Press, New York, 1973; pp. 299–343. Google Scholar
  88. Redecker D., Kodner R., Graham L.E. Glomalean fungi from the Ordovician. Science 2000; 289: 1920–1921. PubMedCrossRefGoogle Scholar
  89. Reid C.P.P. Mycorrhizas. In, The Rhizosphere, J.M. Lynch ed. John Wiley and Sons, Chickester, England; 1990; pp. 281–315. Google Scholar
  90. Safir G. The influence of vesicular mycorrhiza on the resistance of onion of Pyrenochaeta terrestris. M.S. Thesis, Univeristy of Illinois, Urbana. 1968. Google Scholar
  91. Sampangi R.K. Some recent advances in the study of fungal root diseases. Ind Phytopth 1989; 22: 1–17. Google Scholar
  92. Secilia J., Bagyaraj D.J. Bacteria and actinomycetes associated with pot cultures of vesicular arbuscular mycorrhiza. Can J Microbol 1987; 33: 1069–1073. CrossRefGoogle Scholar
  93. Shaul O., Galili S., Volpin H., Ginzberg I.I., Elad Y., Chet I. I., Kapulnik Y. Mycorrhiza - induced changes in disease severity and PR protein expression in tobacco laves. Mol Plant-Microbe Interact 1999; 12: 1000–1007. PubMedGoogle Scholar
  94. Singh D.P., Srivastava J.S., Bahadur A., Singh U.P., Singh S.K. Arbuscular mycorrhizal fungi induced biochemical changes in pea (Pisum sativaum) and their effect on powdery mildew (Erysiphe pisi). Phytopathol Z fur Pelanzekrankheiten und Pelanzenschutz 2004; 111: 266–272. Google Scholar
  95. Singh G., Mukerji K.G. Root exudates as determinant of rhizospheric microbial diversity. In, Microbial activity in the rhizosphere. K.G. Mukerji, C. Manoharachary, J. Singh eds. Springer Verlag, Berlin, Heidelberg. 2006; 39–55. Google Scholar
  96. Singh R., Adholeya A., Mukerji K.G. Mycorrhiza in control of soiolborne pathogens. In: Mycorrhizal biology. London, 2000; pp. 173–196. Google Scholar
  97. Smith S.E., Reid D.J. Mycorrhizal Symbiosis. Academic Press, London, New York. 1997; p. 605. Google Scholar
  98. Srivastava D., Kapoor R., Srivastava S.K., Mukerji K.G. Vesicular-arbuscular mycorrhiza - an overview. In, Concept in mycorrhizal research, K.G. Mukerji ed. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996; pp. 1–39. Google Scholar
  99. St-Arnaud M., Hamel C., Carom M, Fortin J.A. Inhibition of Pythium ultimum in roots and growth substrate of mycorrhizal Tagetes patula colonized with Glomus intraradices. Can J Path 1995; 16: 187–194. Google Scholar
  100. St-Arnaud M., Hamel C., Vimard B., Caron M., Fortin J.A. Inhibition of Fusarium oxysporum f. sp. dianthi in the non-VAM species Dianthus caryophyllus by co-culture with Tagetes patula companion plants colonized by Glomus intraradices. Can J Bot 1997; 75: 998–1005. Google Scholar
  101. Strobel N.E., Sinclair W.A. Role of flavonilic wall inclusions in the resistance induced by Laccaria bicolor to Fusarium oxysporum in primary roots of Donglas fir. Phytopathology 1991; 81: 420–425. Google Scholar
  102. Tagu D., Martin F. Molecular anlaysis of cell wall proteins expressed during early steps of ectomycorrhiza development. New Phytol 1996; 133: 73–85. CrossRefGoogle Scholar
  103. Torres-Barragan A., Zavaleta-Mejia E., Gonzalez-Chavez C., Ferrera-Cerrato R. The use of arbuscular mycorrhizae to control onion white rot (Sclerotium cepivorum Berk.) under field conditions. Mycorrhiza 1996; 6: 253–257. CrossRefGoogle Scholar
  104. Trotta A., Varese G.C., UNAVI E., Fusconi A., Sampo S., Berta G. Interactions between the soil-borne root pathogen Phytophthora nicotianae var parasitica and arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 1996; 185: 199–209. CrossRefGoogle Scholar
  105. Vierhilig H., Bago B., Albrecht C., Poulin M.J., Piche Y. Flavonoids and arbuscular mycorrhizal fungi. In : Falvonoids in the living system.J. Manthey, B. Buslig eds. Plenum, New York, 1998; pp. 9–33. Google Scholar
  106. Vierheilig H., Gagnon H., Strack D., Maier W. Accumulation of cyclohexenone derivatives in barley, wheat and maize roots in response to inoculation with different arbuscular mycorrhizal fungi. Mycorrhiza 2000; 9:291–293. CrossRefGoogle Scholar
  107. Volpin H., Elkind Y. Okon Y., Kapulnik Y. A vesicular arbuscular mycorrhizal fungus (Glomus intraradix) induce a defense response in alfalfa roots. Pl Physiol 1994; 104: 683–689. Google Scholar
  108. Volpin H., Kapulnik Y. Interaction of Azospirillum with beneficial soil microorganisms. In: Azospirillum / Plant Associations. Okon Y. ed. CRC Press Boca Baton FL 1994; pp. 111–118. Google Scholar
  109. Volpin H., Phillips D.A., Okon Y., Kapulnik Y. Suppression of an isoflavonoid phytoalexin defense response in myocrrhizal alfalfa roots. Plant Physiol 1995; 108: 1449–1545. PubMedGoogle Scholar
  110. Walker C. Systamatics and Taxonomy of the arbuscular endomycorrhizal fungi (Glomales) - a possible way forward. Agronomie 1992; 12: 887–892. Google Scholar
  111. Walter M.H., Festr T. Strack D. Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the ’yellow pigment’ and other apocarotenoids. Plant J 2000; 21: 571–578. PubMedCrossRefGoogle Scholar
  112. Walter M.H., Hans J., Strack D. Two distantly related genes encoding 1-deoxy-D-xylulose 5-phosphate synthases: differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots. Plant J 2002; 31: 243–254. PubMedCrossRefGoogle Scholar
  113. Yao M.K. Desilets H., Charles M.T., Boulanger R. Tweddell R.J. Effect of mycorrhization on the accumulation of rishitin and solavetivone in potato plantlets challenged with Rhizoctonia solani. Mycorrhiza 2003;13:333–336. PubMedCrossRefGoogle Scholar
  114. Yao M., Tweddell R., Desilets H. Effect of two vesicular-arbuscular mycorrhizal fungi on the growth of micropropagated potato plantlets and on the extent of disease caused by Rhizotonia solani. Mycorrhiza 2002; 12: 235–242. PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • REN-SEN ZENG
    • 1
  1. 1.Chemical Ecology Lab., Institute of Tropical & Subtropical EcologyAgricultural College, South China Agricultural University WushanGuangzhouChina

Personalised recommendations