• Marco J.L. Coolen
  • Gerard Muyzer
  • Stefan Schouten
  • John K. Volkman
  • Jaap S. Sinninghe Damsté
Part of the Nato Science Series: IV: Earth and Environmental Sciences book series (NAIV, volume 64)


Postglacial Ace Lake (Vestfold Hills, Antarctica) was initially a freshwater lake, then an open marine system, and finally the present-day saline, stratified basin with anoxic, sulfidic, and methane-saturated bottom waters. Stratigraphic analysis of carotenoids and ancient 16S rDNA in sediment cores revealed that almost immediately after marine waters entered the palaeo freshwater lake as a result of post-glacial sea-level rise, Ace Lake became meromictic with the formation of sul.dic bottom waters and a chemocline colonized by obligate anoxygenic photolithotrophic green sulfur bacteria (Chlorobiaceae). Ancient 16S rDNA stratigraphy revealed that the fossil source of chlorobactene throughout the Holocene as well as in the present-day chemocline of Ace Lake was a species with 99.6% sequence similarity to the 16S rDNA sequence of Chlorobium phaeovibrioides DSMZ 269T. Comparison of the ratio between rDNA and chlorobactene of the latter species in the water column and in Holocene sediment layers revealed that the degradation of DNA was mostly influenced by the preservation conditions of the ancient water column. Within the sulfidic Holocene sediments, the remaining ancient DNA of green sulfur bacteria was more stable than intact carotenoids. We showed the development of anoxygenic photosynthesis with our previous stratigraphic analysis of 16S rDNA and lipid biomarkers indicative for prokaryotes involved in the cycling of methane in order to get a more complete picture of anoxygenic processes in Ace Lake during the Holocene.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J., Rapp B.A. and Wheeler D.L. GenBank. Nucl Acids Res 2000; 28:15-18.CrossRefGoogle Scholar
  2. 2.
    Bird M.I., Chivas A.R., Radnell C.J. and Burton H.R. Sedimentological and stable-isotope evolution of Ace Lake in the Vestfold Hills, Antarctica. Palaeogeo Palaeoclimatol Palaeoecol 1991; 84:109-130.Google Scholar
  3. 3.
    Bowman J.P., McCammon S.A. and Skerratt J.H. Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiol 1997; 143:1451-1459.Google Scholar
  4. 4.
    Bowman J.P., Rea S.M., McCammon S.A. and McMeekin T.A. Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hills, Eastern Antarctica. Env Microbiol 2000; 2:227-237.Google Scholar
  5. 5.
    Britton G. UV/Visible Spectroscopy. In: Carotenoids, vol. 1B: Spectroscopy, Britton G., Liaaen-Jensen S. and Pfande H., eds., Basel, Birkhäuser Verlag, 1995.Google Scholar
  6. 6.
    Burch M.D. Annual cycle of phytoplankton in Ace Lake, an ice covered, saline meromictic lake. Hydrobiol 1988; 165:59-75.CrossRefGoogle Scholar
  7. 7.
    Burke C.M. and Burton H.R. Photosynthetic bacteria in meromictic lakes and stratified fjords of the Vestfold Hills, Antarctica. Hydrobiol 1988; 165:13-23.Google Scholar
  8. 8.
    Burton H.R. Methane in a saline Antarctic lake. In: Biogeochemistry of ancient and modern environments, Trudinger P.A. and Walter M.R., eds., Canberra, Australian Academy of Science, 1980.Google Scholar
  9. 9.
    Burton H.R. and Barker R.J. Sulfur chemistry and microbiological fractionation of sulfuri sotopes in a saline Antarctic lake. Geomicrobiol J 1979; 1:329-340.Google Scholar
  10. 10.
    Coolen M.J.L., Cypionka H., Sass A.M., Sass H. and Overmann J. Ongoing modification of Mediterranean Pleistocene sapropels mediated by prokaryotes. Science 2002; 296:2407-2410.CrossRefGoogle Scholar
  11. 11.
    Coolen M.J.L., Hopmans E.C., Rijpstra W.I.C., Muyzer G., Schouten S., Volkman J.K. and Sinninghe Damsté J.S. Evolution of the methane cycle in Ace Lake (Antarctica) during the Holocene: Response of methanogens and methanotrophs to environmental changes. Org Geochem 2004a; 35:1151-1167.CrossRefGoogle Scholar
  12. 12.
    Coolen M.J.L., Muyzer G., Rijpstra W.I.C., Schouten S., Volkman J.K. and Sinninghe Damsté J.S. Combined DNA and lipid analysis of sediments reveal changes in Holocene haptophyte and diatom populations in an Antarctic lake. Earth Planet Sci Lett 2004b; 223:225-239.CrossRefGoogle Scholar
  13. 13.
    Coolen, M.J.L. and Overmann, J. Analysis of subfossil remains of purple sulfur bacteria in a lake sediment. Appl Environm Microbiol 1998; 64:4513-4521.Google Scholar
  14. 14.
    Cromer L., Gibson J.A.E., Swadling K.M. and Ritz D.A. Faunal indicators of Holocene ecological change in a Antarctic Lake. Palaeogeo Palaeoclimatol Palaeoecol 2005; 221:83-97.Google Scholar
  15. 15.
    Fulford-Smith S.P. and Sikes E.L. The evolution of Ace Lake, Antarctica, determined from sedimentary diatom assemblages. Palaeogeo Palaeoclimatol Palaeoecol 1996; 124:73-86.Google Scholar
  16. 16.
    Franzmann P.D., Deprez P.P., Burton H.R. and van den Hoff J. Limnology of Organic Lake, Antarctica, a meromictic lake that contains high concentrations of dimethyl sulfde. Austral J Mar Freshw Res 1987; 38:409-417.Google Scholar
  17. 17.
    Franzmann P.D., Liu Y., Balkwill D.L., Aldrich H.C., Conway de Macario E. and Boone D.R. Methanogenium frigidum sp. nov., a psychrophylic H2-using methanogen from Ace Lake, Antarctica. Intern J System Bact 1997; 47:1068-1072.Google Scholar
  18. 18.
    Franzmann P.D., Roberts N.J., Mancuso C.A., Burton H.R. and McMeekin T.A. Methaneproduction in meromictic Ace Lake, Antarctica. Hydrobiol 1991; 210:191-201.CrossRefGoogle Scholar
  19. 19.
    Franzmann P.D., Skyring G.W., Burton H.R. and Deprez P.P. Sulfate reduction rates and some aspects of the limnology of four lakes and a fjord in the Vestfold Hills, Antarctica. Hydrobiol 1988; 165:25-33.CrossRefGoogle Scholar
  20. 20.
    Franzmann, P.D., Springer, N., Ludwig, W., Conway de Macario, E. and Rhode, M. A methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp. nov. System Appl Microbiol 1992; 15:573-581.Google Scholar
  21. 21.
    Gibson J.A.E. The meromictic lakes and stratified marine basins of the Vestfold Hills, East Antarctica. Antarctic Sci 1999; 11:175-192.Google Scholar
  22. 22.
    Gibson J.A.E., Garrick R.C., Franzmann P.D., Deprez P.P. and Burton H.R. Reduced sulfur gases in saline lakes of the Vestfold Hills, Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 1991; 84:131-140.CrossRefGoogle Scholar
  23. 23.
    Hanselmann, K.W. Microbially mediated processes in environmental chemistry. Chimia 1986; 40:146-159.Google Scholar
  24. 24.
    Hauswirth W.W., Dickel C.D. and Lawlor D. DNA analysis of the Windover population. In: Ancient DNA, Herrmann B. and Hummel S. eds., New York, Springer, 1994.Google Scholar
  25. 25.
    Inagaki F., Okada H., Tsapin A.I. and Nealson K.H. The paleome: A sedimentary record of past microbial communities. Astrobiol 2005; 5:141-53.Google Scholar
  26. 26.
    Inagaki F., Sakihama, Y., Takai K., Komatsu T., Inoue A. and Horikoshi K. Profile of microbial community structure and presence of endolithic microorganisms inside a deep-sea rock. Geomicrobiol J 2002; 19:535-552.CrossRefGoogle Scholar
  27. 27.
    Inagaki F., Takai K., Komatsu T., Kanamatsu T., Fujioka K. and Horikoshi K. Archaeology of Archaea: Geomicrobiological record of Pleistocene thermal events concealed in a deep-sea subseafioor environment. Extremophiles 2001; 5:385-392.CrossRefGoogle Scholar
  28. 28.
    Koga Y., Morii H., Akagawa-Matsushita M. and Ohga M. Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens. Further analysis of lipid component parts. Biosci Biotech Biochem 1998; 62:230-236.Google Scholar
  29. 29.
    de Leeuw J.W. and Largeau, G. A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal and petroleum formation. In: Organic Geochemistry, Engel M.H. and Macko S.A. eds., New York, Plenum Press, 1993.Google Scholar
  30. 30.
    Limburg P.A. and Weider L.J. ‘Ancient’ DNA in the resting egg bank of a microcrustacean can serve as a palaeolimnological database. Proc Roy Soc London Ser B-Biol Sci 2002; 269:281-287.Google Scholar
  31. 31.
    Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S., Jobb G., Förster W., Brettske I., Gerber S., Ginhart A.W., Gross O., Grumann S., Hermann S., Jost R., König A., Liss T., Lüßmann R., May M., Nonhoff B., Reichel B., Strehlow R., Stamatakis A., Stuckmann N., Vilbig A., Lenke M., Ludwig T., Bode A. and Schleifer K.-H. ARB: a software environment for sequence data. Nucl Acids Res 2004; 32:1363-1371.CrossRefGoogle Scholar
  32. 32.
    Maidak B.L., Cole J.R., Lilburn T.G., Parker Jr. C.T., Saxman P.R., Farris R.J., Garrity G.M., Olsen G.J., Schmidt T.M. and Tiedje J.M. The RDP-II (Ribosomal Database Project). Nucl Acids Res 2001; 29:173-174.CrossRefGoogle Scholar
  33. 33.
    Muyzer G., de Waal E.C., Uitterlinden A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environm Microbiol 1993; 59:695-700.Google Scholar
  34. 34.
    Overmann J., Coolen M.J.L. and Tuschak C. Specific detection of different phylogenetic groups of chemocline bacteria based on PCR and denaturing gradient gel electrophoresis of 16S rRNA gene fragments. Archiv Microbiol 1999; 172:83-94.CrossRefGoogle Scholar
  35. 35.
    Overmann J. and Tuschak C. Phylogeny and molecular fingerprinting of green sulfur bacteria. Arch Microbiol 1997; 167:302-309.CrossRefGoogle Scholar
  36. 36.
    Pfennig N. and Trüper H.G. Anoxygenic phototrophic bacteria In: Bergey's Manual of Systematic Bacteriology, vol. 3, Staley J.T., Bryant M.P., Pfennig N. and Holt J.C. eds. Baltimore, Williams and Wilkins, 1989.Google Scholar
  37. 37.
    Pickard J. Antarctic oases. Davis Station and the Vestfold Hills. In: Antarctic oases. Pickard J. ed., Sydney, Academic Press, 1986.Google Scholar
  38. 38.
    Rankin L.M., Gibson J.A.E., Franzmann P.D. and Burton H.R. The chemical stratification and microbial communities of Ace Lake, Antarctica: A review of the characteristics of a marine-derived meromictic lake. Polarforschung 1999; 66:33-52.Google Scholar
  39. 39.
    Raniello R. and Procaccini G. Ancient DNA in the seagrass Posidonia oceanica. Mar Ecol Prog Ser 2002; 227:269-273.Google Scholar
  40. 40.
    Reid V.A., Carvalho G.R. and George D.G. Molecular genetic analysis of Daphnia in the English Lake District: Species identity, hybridization and resting egg banks. Freshw Biol 2000; 44:247-253.CrossRefGoogle Scholar
  41. 41.
    Risatti J.B., Rowland S.J., Yon D.A. and Maxwell, J.R. Stereochemical studies of acyclic isoprenoids-XII. Lipids of methanogenic bacteria and possible contributions to sediments. In: Advances in Organic Geochemistry 1983, Schenck P.A., de Leeuw J.W. and Lijmbach G.W.M. eds., Oxford, Pergamon Press Ltd, 1984.Google Scholar
  42. 42.
    Roberts D. and McMinn A. A diatom-based palaeosalinity history of Ace Lake, Vestfold Hills, Antarctica. The Holocene 1999; 9:401-408.Google Scholar
  43. 43.
    Schaeffer P., Adam P., Wehrung P. and Albrecht P. Novel aromatic carotenoid derivatives from sulfur photosynthetic bacteria in sediments. Tetrahedron Lett 1997; 38:8413-8416.CrossRefGoogle Scholar
  44. 44.
    Schouten S., Bowman J.P., Rijpstra W.I.C. and Sinninghe Damsté J.S. Sterols in a psychrophylic methanotroph, Methylosphaera hansonii. FEMS Microbiol Lett 2000; 186:193-195.CrossRefGoogle Scholar
  45. 45.
    Schouten, S., van der Maarel M.J.E.C., Hubert R. and Sinninghe Damsté J.S. 2,6,10,15,19-pentamethylicosenes in Methanolobus bombayensis, a marine methanogenic archaeon and Methanosarcina mazei. Org Geochem 1997; 26:409-414.CrossRefGoogle Scholar
  46. 46.
    Schouten S., Rijpstra W.I.C., Kok M., Hopmans E.C., Summons R.E., Volkman J.K. and Sinninghe Damsté J.S. Molecular organic tracers of biogeochemical processes in a saline meromictic lake (Ace Lake). Geochim Cosmochim Acta 2001; 65:1629-1640.CrossRefGoogle Scholar
  47. 47.
    Sinninghe Damsté J.S. and Koopmans M.P. The fate of carotenoids in sediments: An overview. Pure Appl Chem 1997; 89:2067-2074.Google Scholar
  48. 48.
    Sprott G.D., Dicaire C.J., Choquet C.G., Patel G.B. and Ekiel I. Hydroxy diether lipid structures in Methanosarcina spp. and Methanococcus voltae. Appl Environm Microbiol 1993; 59:912-914.Google Scholar
  49. 49.
    Stuiver M., Reimer P.J. and Braziunas T.F. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 1998; 40:1127-1151.Google Scholar
  50. 50.
    Summons R. E., Jahnke L.J. and Roksandic Z. Carbon isotope fractionation in lipids from methanotrophic bacteria: relevance for the interpretation of the geochemical record of biomarkers. Geochim Cosmochim Acta 1994; 58:2853-2863.CrossRefGoogle Scholar
  51. 51.
    Swadling K.M., Dartnall H.J.G., Gibson J.A.E., Saulnier-Talbot E. and Vincent W.F. Fossil rotifers and the early colonization of an Antarctic Lake Quat Res 2001; 55:380-384.CrossRefGoogle Scholar
  52. 52.
    de Wit R. and Caumette P. An overview of the brown-coloured isorenieratene-containing green sulphur bacteria (Chlorobiaceae). In: Organic Geochemistry: Developments and applications to energy, climate, environment and human history, Grimalt J.O. and Dorronsoro C. eds., A.I.G.O.A, Donostia-San Sebastian, 1995.Google Scholar
  53. 53.
    Zwartz D., Bird M., Stone J. and Lambeck K. Holocene sea-level change and ice-sheet history in the Vestfold Hills, East Antarctica. Earth Planet Sci Lett 1998; 155:131-145.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Marco J.L. Coolen
    • 1
  • Gerard Muyzer
    • 2
    • 3
  • Stefan Schouten
    • 2
  • John K. Volkman
    • 4
  • Jaap S. Sinninghe Damsté
    • 2
  1. 1.Woods Hole Oceano g r aphic InstitutionUSA
  2. 2.Department of Marine BiogeochemistryRoyal Netherlands Institute for Sea ResearchThe Netherlands
  3. 3.Department of BiotechnologyDelft University of TechnologyThe Netherlands
  4. 4.AntarcticCRCand CSIROMarine ResearchHobart, Tasmania 7001Australia

Personalised recommendations