Skip to main content

The CP47 and CP43 Core Antenna Components

  • Chapter

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 22))

Summary

The CP47 and CP43 subunits of Photosystem II bind chlorophyll a and belong to a family of (bacterio)chlorophyll-binding proteins that serve as core antenna polypeptides in both anoxygenic and oxygenic photosynthesis. Uniquely, both of these proteins possess extended hydrophilic domains that contribute to the environment of the oxygen-evolving complex. Structural studies have shown that these polypeptides are associated with both intrinsic components of the reaction center and with the extrinsic proteins that enhance O2 evolution under physiological conditions. The biochemical, spectroscopic and molecular techniques that have been used to define these interactions, as well as the functional domains within these proteins, are presented and encompass studies performed on photosynthetic eukaryotes and cyanobacteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alt J, Morris J, Westhoff P and Herrman RG (1984) Nucleotide sequence of the clustered genes for the 44 kd chlorophyll a apoprotein and the ‘32 kd’-like protein of the Photosystem II reaction center in the spinach plastid chromosome. Curr Genet 8: 597–606

    CAS  Google Scholar 

  • Amesz J (1995) The antenna-reaction center complex of heliobacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 687–697. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Anderson LB, Ouellette AJA and Barry BA (2000) Probing the structure of Photosystem II with amines and phenylhydrazine. J Biol Chem 275: 4920–4927

    CAS  PubMed  Google Scholar 

  • Anderson LB, Maderia M, Ouellette AJA, Putnam-Evans C, Higgins LA, Krick T, MacCoss MJ, Lim H, Yates III JR and Barry BA (2002) Posttranslational modifications in the CP43 subunit of Photosystem II. Proc Natl Acad Sci USA 99: 14676–14681

    CAS  PubMed  Google Scholar 

  • Anderson LB, Ouellette AJA, Eaton-Rye J, Maderia M, MacCoss MJ, Yates III JR and Barry BA (2004) Evidence for a post-translational modification, aspartyl aldehyde, in a photosynthetic membrane protein. J Am Chem Soc 126: 8399–8405

    CAS  PubMed  Google Scholar 

  • Aro EM, Hundal T, Carlberg I and Andersson B (1990) In vitro studies on light-induced inhibition of photosystem-II and D1-protein degradation at low-temperatures. Biochim Biophys Acta 1019: 269–275

    CAS  Google Scholar 

  • Aro E-M, Virgin I and Andersson B (1993) Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143: 113–134

    CAS  PubMed  Google Scholar 

  • Barbarto R, Race HL, Friso G and Barber J (1991) Chlorophyll levels in the pigment-binding proteins of Photosystem II. A study based on the chlorophyll to cytochrome ratio in different Photosystem II preparations. FEBS Lett 286: 86–90

    Google Scholar 

  • Barber J, Nield J, Morris EP and Hankamer B (1999) Subunit positioning in Photosystem II revisited. Trends Biochem Sci 24: 43–45

    Article  CAS  PubMed  Google Scholar 

  • Barber J, Morris E and Büchel C (2000) Revealing the structure of the Photosystem II chlorophyll-binding proteins, CP43 and CP47. Biochim Biophys Acta 1459: 239–247

    CAS  PubMed  Google Scholar 

  • Barkan A (1988) Proteins encoded by a chloroplast transcription unit are each translated from both monocistronic and polycistronic mRNAs. EMBO J 7: 2637–2644

    CAS  PubMed  Google Scholar 

  • Bricker TM (1990) The structure and function of CPa-1 and CPa-2 in Photosystem II. Photosynth Res 24: 1–13

    Article  CAS  Google Scholar 

  • Bricker TM and Frankel LK (1987) Use of a monoclonal antibody in structural investigations of the 49-kDa polypeptide of Photosystem II. Arch Biochem Biophys 256: 295–301

    CAS  PubMed  Google Scholar 

  • Bricker TM and Frankel LK (1998) The structure and function of the 33 kDa extrinsic protein of Photosystem II. A critical review. Photosynth Res 56: 157–173

    Article  CAS  Google Scholar 

  • Bricker TM and Frankel LK (2002) The structure and function of CP47 and CP43 in Photosystem II. Photosynth Res 72: 131–146

    Article  CAS  PubMed  Google Scholar 

  • Bricker TM, Odom WR and Queirolo CB (1988) Close association of the 33 kDa extrinsic protein with the apoprotein of CPal in Photosystem II. FEBS Lett 231: 111–117

    Article  CAS  Google Scholar 

  • Bricker TM, Morvant J, Masri N, Sutton HM and Frankel LK (1998) Isolation of a highly active Photosystem II preparation from Synechocystis 6803 using a histidine-tagged mutant of CP 47. Biochim Biophys Acta 1409: 50–57

    CAS  PubMed  Google Scholar 

  • Bricker TM, Lowrance J, Sutton H and Frankel LK (2001) Alterations of the oxygen-evolving apparatus in a 448Arg → 448S mutant in the CP47 protein of Photosystem II under normal and low chloride conditions. Biochemistry 40: 11483–11489

    Article  CAS  PubMed  Google Scholar 

  • Bricker TM, Young A, Frankel LK and Putnam-Evans C (2002) Introduction of the 305Arg → 305Ser mutation in the large extrinsic loop E of the CP43 protein of Synechocystis sp. PCC 6803 leads to the loss of cytochrome c5 50 binding to Photosystem II. Biochim Biophys Acta 1556: 92–96

    CAS  PubMed  Google Scholar 

  • Büchel C, Barber J, Ananyev G, Eshaghi S, Watt R and Dismukes C (1999) Photoassembly of the manganese cluster and oxygen evolution from monomeric and dimeric CP47 reaction center Photosystem II complexes. Proc Natl Acad Sci USA 96: 14288–14293

    PubMed  Google Scholar 

  • Burnap RL, Qian M and Pierce C (1996) The manganese-stabilizing protein of Photosystem II modifies the in vivo deactivation and photoactivation kinetics of the H2O oxidation complex in Synechocystis sp. PCC6803. Biochemistry 35: 874–882

    Article  CAS  PubMed  Google Scholar 

  • Carpenter SD, Charite J, Eggers B and Vermaas WFJ (1990) The psbC start codon in Synechocystis sp. PCC 6803. FEBS Lett 260: 135–137

    Article  CAS  PubMed  Google Scholar 

  • Carpenter SD, Ohad I and Vermaas WFJ (1993) Analysis of chimeric spinach/cyanobacterial CP43 mutants of Synechocystis sp. PCC 6803: The chlorophyll-protein CP43 affects the water-splitting system of Photosystem II. Biochim Biophys Acta 1144: 204–212

    CAS  PubMed  Google Scholar 

  • Chisholm D and Williams JGK (1988) Nucleotide sequence of psbC, the gene encoding the CP-43 chlorophyll a-binding protein of Photosystem II, in the cyanobacterium Synechocystis 6803. Plant Mol Biol 10: 293–301

    Article  CAS  Google Scholar 

  • Christopher DA and Hoffer PH (1998) DET1 represses a chloroplast blue light-responsive promoter in a developmental and tissue-specific manner in Arabidopsis thaliana. Plant J 14: 1–11

    Article  CAS  PubMed  Google Scholar 

  • Chu HA, Nguyen AP and Debus RJ (1995) Amino acid residues that influence the binding of manganese or calcium to Photosystem II. 1. The lumenal interhelical domains of the D1 polypeptide. Biochemistry 34: 5839–5858

    CAS  PubMed  Google Scholar 

  • Clarke SM and Eaton-Rye JJ (1999) Mutation of Phe-363 in the Photosystem II protein CP47 impairs photoautotrophic growth, alters the chloride requirement, and prevents photosynthesis in the absence of either PS II-O or PS II-V in Synechocystis sp. PCC 6803. Biochemistry 38: 2707–2715

    CAS  PubMed  Google Scholar 

  • Clarke SM and Eaton-Rye JJ (2000) Amino acid deletions in loop C of the chlorophyll a-binding protein CP47 alter the chloride requirement and/or prevent the assembly of Photosystem II. Plant Mol Biol 44: 591–601

    Article  CAS  PubMed  Google Scholar 

  • Clarke SM, Funk C, Hendry GS, Shand JA, Wydrzynski T and Eaton-Rye JJ (2002) Amino acid deletions in the cytosolic domains of the chlorophyll a-binding protein CP47 slow Q A oxidation and/or prevent the assembly of Photosystem II. Plant Mol Biol 50: 563–572

    Article  CAS  PubMed  Google Scholar 

  • Debus RJ (2000) The polypeptides of Photosystem II and their influence on mangano-tyrosyl based oxygen evolution. In: Sigel A and Sigel H (eds) Metal Ions in Biological Systems, Vol 37, pp 657–711. Marcel Dekker, New York

    Google Scholar 

  • Deisenhofer J, Epp O, Sinning I and Michel H (1995) Crystallographic refinement at 2.3 Å resolution and refined model of the photo synthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 246: 429–457

    Article  CAS  PubMed  Google Scholar 

  • De las Rivas J, Balsera M and Barber J (2004) Evolution of oxygenic photosynthesis: Genome-wide analysis of the OEC extrinsic proteins. Trends Plant Sci 9: 18–25

    Google Scholar 

  • de Weerd FL, van Stokkum IHM, van Amerongen H, Dekker JP and van Grondelle R (2002a) Pathways for energy transfer in the core light-harvesting complexes CP43 and CP47 of Photosystem II. Biophys J 82: 1586–1597

    PubMed  Google Scholar 

  • de Weerd FL, Palacios MA, Andrizhiyevskaya EG, Dekker JP and van Grondelle R (2002b) Identifying the lowest electronic states of the chlorophylls in the CP47 core antenna protein of Photosystem II. Biochemistry 41: 15224–15233

    PubMed  Google Scholar 

  • Dixit R, Trivedi PK, Nath P and Sane PV (1999) Organization and post-transcriptional processing of the psbB operon from chloroplasts of Populus deltoides. Curr Genet 36: 165–172

    Article  CAS  PubMed  Google Scholar 

  • Douglas SE (1994) Chloroplast origins and evolution. In: Bryant DA (ed) Molecular Biology of the Cyanobacteria, pp 91–118. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Dzelzkalns VA and Bogorad L (1988) Molecular analysis of a mutant defective in photosynthetic oxygen evolution and isolation of a complementing clone by a novel screening procedure. EMBO J 7: 333–338

    CAS  PubMed  Google Scholar 

  • Eaton-Rye JJ and Shand JA (2001) Mutations between Gly-429 and Thr-436 in loop E of the chlorophyll a-binding protein CP47 characterized in the presence or absence of the membrane-extrinsic proteins of the water-oxidizing complex of Photosystem II. In: PS2001 Proceedings: 12th International Congress on Photosynthesis, S13-004, CSIRO Publishing, Melbourne (CD-ROM)

    Google Scholar 

  • Eaton-Rye JJ and Vermaas WFJ (1991) Oligonucleotide-directed mutagenesis of psbB, the gene encoding CP47, employing a deletion strain of the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol 17: 1165–1177

    Article  CAS  PubMed  Google Scholar 

  • Eaton-Rye JJ and Vermaas WFJ (1992) Characterization of a histidine to glutamine substitution at residue 469 in CP47 of Photosystem II. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 239–242. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Eaton-Rye JJ, Shand JA and Nicoll WS (2003) pH-dependent photoautotrophic growth of specific Photosystem II mutants lacking lumenal extrinsic polypeptides in Synechocystis PCC 6803. FEBS Lett 543: 148–153

    Article  CAS  PubMed  Google Scholar 

  • Elanskaya IV, Allakhverdiev SI, Boichenko VA, Klimov V, Demeter S, Timofeev KN and Shestakov SV (1994) Photochemical characterization of cyanobacterium Synechocystis sp. PCC 6803 mutants with impaired Photosystem II proteins. Biochemistry (Moscow) 59: 929–934

    Google Scholar 

  • Elich TD, Edelman M, and Matoo AK (1993) Dephosphorylation of Photosystem II core proteins is light-regulated in vivo. EMBO J 12: 4857–4862

    CAS  PubMed  Google Scholar 

  • Enami I, Satoh K and Katoh S (1987) Crosslinking between the 33 kDa extrinsic protein and the 47 kDa chlorophyll-carrying protein of the PS II reaction center core complex. FEBS Lett 226: 161–165

    Article  CAS  Google Scholar 

  • Enami I, Kaneko M, Kitamura N, Koike H, Sonoike K, Inoue Y and Katoh S (1991) Total immobilization of the extrinsic 33 kDa protein in spinach Photosystem II membrane preparations. Protein stoichiometry and stabilization of oxygen evolution. Biochim Biophys Acta 1060: 224–232

    CAS  Google Scholar 

  • Enami I, Tohri A, Kamo M, Ohta H and Shen J-R (1997) Identification of domains on the 43 kDa chlorophyll-carrying protein (CP43) that are shielded from tryptic attack by binding of the extrinsic 33 kDa protein with Photosystem II complex. Biochim Biophys Acta 1320: 17–26

    CAS  PubMed  Google Scholar 

  • Enami I, Kikuchi S, Fukuda T, Ohta H and Shen J-R (1998) Binding and functional properties of four extrinsic proteins of Photosystem II from a red alga, Cyanidium caldarium, as studied by release-reconstitution experiments. Biochemistry 37: 2787–2793

    Article  CAS  PubMed  Google Scholar 

  • Enami I, Yoshihara S, Tohri A, Okumura A, Ohta H and Shen J-R (2000) Cross-reconstitution of various extrinsic proteins and Photosystem II complexes from cyanobacteria, red algae and higher plants. Plant Cell Physiol 41: 1354–1364

    Article  CAS  PubMed  Google Scholar 

  • Feiler U and Hauska G (1995) The reaction center from green sulphur bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 665–685. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303: 1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Frankel LK and Bricker TM (1989) Epitope mapping of the monoclonal antibody FAC2 on the apoprotein of CPa-1 in Photosystem II. FEBS Lett 257: 279–282

    Article  CAS  PubMed  Google Scholar 

  • Frankel LK and Bricker TM (1990) Interaction of CPa-1 with components involved with water oxidation in Photosystem II: Mapping of NHS-biotinylation sites and the epitope of the monoclonal antibody FAC2 to the large extrinsic loop region of CPa-1. In: Baltscheffsky M (ed) Current Research in Photosynthesis Vol I, pp 639–642. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Frankel LK and Bricker TM (1992) Interaction of CPa-1 with the manganese-stabilizing protein of Photosystem II: Identification of domains on CPa-1 which are shielded from N-hydroxysuccinimide biotinylation by the manganese-stabilizing protein. Biochemistry 31: 11059–11064

    Article  CAS  PubMed  Google Scholar 

  • Ghanotakis DF, de Paula JC, Demetriou DM, Bowlby NR, Peterson J, Babcock GT and Yocum CF (1989) Isolation and characterization of the 47 kDa protein and the D1-D2-cytochrome b-559 complex. Biochim Biophys Acta 974: 44–53

    CAS  PubMed  Google Scholar 

  • Giacometti GM, Barbato R, Friso G, Frizzo A and Rigoni F (1992) Photosystem II degradation pathways after photoinhibition of isolated thylakoids. In: Murata N (ed) Research in Photosynthesis, Vol IV, pp 505–508 Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gingrich JC, Gasparich GE, Sauer K and Bryant DA (1990) Nucleotide sequence and expression of the two genes encoding D2 protein and the single gene encoding the CP43 protein of Photosystem II in the cyanobacterium Synechococcus sp. PCC 7002. Photosynth Res 24: 137–150

    CAS  Google Scholar 

  • Gleiter HM, Haag E, Shen J-R, Eaton-Rye JJ, Inoue Y and Vermaas WFJ (1994) Functional characterization of mutant strains of the cyanobacterium Synechocystis sp. PCC 6803 lacking short domains within the large, lumen-exposed loop of the chlorophyll protein CP47 in Photosystem II. Biochemistry 33: 12063–12071

    Article  CAS  PubMed  Google Scholar 

  • Gleiter HM, Haag E, Shen J-R, Eaton-Rye JJ, Seeliger AG, Inoue Y, Vermaas WFJ and Renger G (1995) Involvement of the CP47 protein in stabilization and photoactivation of a functional water-oxidizing complex in the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 34: 6847–6856

    Article  CAS  PubMed  Google Scholar 

  • Golden SS and Stearns GW (1988) Nucleotide sequence and transcript analysis of three Photosystem II genes from the cyanobacterium Synechococcus sp. PCC7942. Gene 67: 85–96

    Article  CAS  PubMed  Google Scholar 

  • Groot M-L, Frese RN, de Weerd FL, Bromek K, Pettersson Å, Perterman EJG, van Stockkum IHM, van Grondelle R and Dekker JP (1999) Spectroscopic properties of the CP43 core antenna protein of Photosystem II. Biophys J 77: 3328–3340

    CAS  PubMed  Google Scholar 

  • Haag E, Eaton-Rye JJ, Renger G and Vermaas WFJ (1993) Functionally important domains of the large hydrophilic loop of CP47 as probed by oligonucleotide-directed mutagenesis in Synechocystis sp. PCC 6803. Biochemistry 32: 4444–4454

    Article  CAS  PubMed  Google Scholar 

  • Hackett CS and Strittmatter P (1984) Covalent cross-linking of the active sites of vesicle-bound cytochrome b5 and NADH-cytochrome b5 reductase. J Biol Chem 259: 3275–3282

    CAS  PubMed  Google Scholar 

  • Hankamer B, Morris EP and Barber J (1999) Revealing the structure of the oxygen-evolving core dimer of Photosystem II by cryoelectron crystallography. Nat Struct Biol 6: 560–564

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, Fujimura Y, Mohanty PS and Murata N (1993) The role of CP47 in the evolution of oxygen and the binding of the extrinsic 33-kDa protein to the core complex of Photosystem II as determined by limited proteolysis. Photosynth Res 36: 35–42

    Article  CAS  Google Scholar 

  • Hird SM, Webber AN, Wilson RJ, Dyer TA and Gray JC (1991) Differential expression of the psbB and psbH genes encoding the 47 kDa chlorophyll a-protein and the 10 kDa phosphoprotein of Photosystem II during chloroplast development in wheat. Curr Genet 19: 199–206

    Article  CAS  PubMed  Google Scholar 

  • Hong L, Stevenson JK, Roth WB and Hallick RB (1995) Euglena gracilis chloroplast psbB, psbT, psbH and psbN gene cluster: Regulation of psbB-psbT pre-mRNA processing. Mol Gen Genet 247: 180–188

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Damjanovic A, Ritz T and Schulten K (1998) Architecture and mechanism of the light-harvesting apparatus of purple bacteria. Proc Natl Acad Sci USA 95: 5935–5941

    CAS  PubMed  Google Scholar 

  • Huang IY, Lynch DP and Eaton-Rye JJ (2001) Mutagenesis of histidine-469 in the Photosystem II chlorophyll a-binding protein CP47 in Synechocystis sp. PCC 6803. In: PS2001 Proceedings: 12th International Congress on Photosynthesis, S22-028, CSIRO Publishing, Melbourne (CD-ROM)

    Google Scholar 

  • Ikeuchi M, Plumley FG, Inoue Y and Schmidt GW (1987) Phosphorylation of Photosystem II components, CP43 apoprotein, D1, D2, and 10 to 11 kilodalton protein in chloroplast thylakoids of higher plants. Plant Physiol 85: 638–642

    CAS  Google Scholar 

  • Isogai Y, Yamamoto Y and Nishimura M (1985) Association of the 33-kDa polypeptide with the 43-kDa component in Photosystem II particles. FEBS Lett 187: 240–244

    Article  CAS  Google Scholar 

  • Johnson CH and Schmidt GW (1993) The psbB gene cluster of the Chlamydomonas reinhardtii chloroplast: sequence and transcriptional analyses of psbN and psbH. Plant Mol Biol 22: 645–658

    Article  CAS  PubMed  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5 Å resolution. Nature 411: 909–917

    Article  CAS  PubMed  Google Scholar 

  • Kamiya N and Shen J-R (2003) Crystal structure of oxygen-evolving Photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution. Proc Natl Acad Sci USA 100: 98–103

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. Strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3: 109–136

    CAS  PubMed  Google Scholar 

  • Kashino Y, Lauber WM, Carroll JA, Wang Q, Whitmarsh J, Satoh K and Pakrasi HB (2002) Proteomic analysis of a highly active Photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Biochemistry 41: 8004–8012

    Article  CAS  PubMed  Google Scholar 

  • Keller M, Weil JH and Nair CKK (1989) Nucleotide sequence of the psbB gene of Euglena gracilis. Plant Mol Biol 13: 723–725

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Thum KE, Morishige DT and Mullet JE (1999) Detailed architecture of the barley chloroplast psbD-psbC blue light-responsive promoter. J Biol Chem 274: 4684–4692

    CAS  PubMed  Google Scholar 

  • Knoepfle N, Bricker TM and Putnam-Evans C (1999) Site-directed mutagenesis of basic arginine residues 305 and 342 in the CP 43 protein of Photosystem II affects oxygen-evolving activity in Synechocystis 6803. Biochemistry 38: 1582–1588

    Article  CAS  PubMed  Google Scholar 

  • Kohchi T, Yoshida T, Komano T and Ohyama K(1988) Divergent mRNA transcription in the chloroplast psbB operon. EMBO J 7: 885–891

    CAS  PubMed  Google Scholar 

  • Kowallik KV (1993) Origin and evolution of plastids from chlorophyll a + c-containing algae: Suggested ancestral relationships to red and green algal plastids. In: Lewin RA (ed) Origin of Plastids: Symbiogenesis, Prochlorophytes and the Origin of Chloroplasts, pp 223–263. Chapman and Hall, New York

    Google Scholar 

  • Krauß N, Schubert W-D, Klukas O, Fromme P, Witt HT and Saenger W (1996) Photosystem I at 4 Å resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system. Nat Struct Biol 3: 965–973

    Article  PubMed  Google Scholar 

  • Kuhn MG, and Vermaas WFJ (1993) Deletion mutations in a long hydrophilic loop in the Photosystem II chlorophyll-binding protein CP43 in the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol 23: 123–133

    CAS  PubMed  Google Scholar 

  • Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621

    Article  PubMed  Google Scholar 

  • Lindberg K and Andréasson L-E (1996) A one-site, two-state model for the binding of anions in Photosystem II. Biochemistry 35: 14259–14267

    Article  CAS  PubMed  Google Scholar 

  • Maid U and Zetsche K (1992) A 16 kb small single-copy region separates the plastid DNA inverted repeat of the unicellular red alga Cyanidium caldarium: Physical mapping of the IR-flanking regions and nucleotide sequences of the psbD-psbC, rpsl6, 5S rRNA and rpl21 genes. Plant Mol Biol 19: 1001–1010

    Article  CAS  PubMed  Google Scholar 

  • Manna P and Vermaas W (1997) Mutational studies on conserved histidine residues in the chlorophyll-binding protein CP43 of Photosystem II. Eur J Biochem 247: 666–672

    Article  CAS  PubMed  Google Scholar 

  • Maul JE, Lilly JW, Cui L, dePamphilis CW, Miller W, Harris EH and Stern DB (2002) The Chlamydomonas reinhardtii plastid chromosome: Islands of genes in a sea of repeats. Plant Cell 14: 2659–2679

    Article  CAS  PubMed  Google Scholar 

  • Mayes SR and Barber J (1991) Primary structure of the psbN-psbH-petC-petA gene cluster of the cyanobacterium Synechocystis PCC 6803. Plant Mol Biol 17: 289–293

    Article  CAS  PubMed  Google Scholar 

  • McConnell MD, Koop R, Vasil’ev S and Bruce D (2002) Regulation of the distribution of chlorophyll and phycobilin-absorbed excitation energy in cyanobacteria. A structure-based model for the light state transition. Plant Physiol 130: 1201–1212

    Article  CAS  PubMed  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521

    Article  CAS  Google Scholar 

  • Michel H and Deisenhofer J (1988) Relevance of the photosynthetic reaction center from purple bacteria to the structure of Photosystem II. Biochemistry 27: 1–7

    Article  CAS  Google Scholar 

  • Michel H, Hunt DF, Shabanowitz J and Bennett J (1988) Tandem mass spectrometry reveals that three Photosystem II proteins of spinach chloroplasts contain N-acetyl-O-phosphothreonine at their NH2 termini. J Biol Chem 263: 1123–1130

    CAS  PubMed  Google Scholar 

  • Morgan TR, Shand JA, Clarke SM and Eaton-Rye JJ (1998) Specific requirements for cytochrome c-550 and the manganese-stabilizing protein in photoautotrophic strains of Synechocystis sp. PCC 6803 with mutations in the domain Gly-351 to Thr-436 of the chlorophyll-binding protein CP47. Biochemistry 37: 14437–14449

    CAS  PubMed  Google Scholar 

  • Mori H and Yamamoto Y (1992) Deletion of antenna chlorophyll-a-binding proteins CP43 and CP47 by tris-treatment of PS II membranes in weak light: Evidence for a photo-degradative effect on the PS II components other than the reaction center-binding proteins. Biochim Biophys Acta 1100: 293–298

    CAS  Google Scholar 

  • Mori H, Yamashita Y, Akasaka T and Yamamoto Y (1995) Further characterization of the loss of antenna chlorophyll-binding protein CP43 from Photosystem II during donor-side photo-inhibition. Biochim Biophys Acta 1228: 37–42

    Google Scholar 

  • Nakatani HY, Ke B, Dolan E and Arntzen CJ (1984) Identity of the Photosystem II reaction center polypeptide. Biochim Biophys Acta 765: 347–352

    CAS  Google Scholar 

  • Nanba O and Satoh K (1987) Isolation of a Photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci USA 84: 109–112

    CAS  Google Scholar 

  • Nixon PJ, Rögner M and Diner BA (1991) Expression of a higher plant psbA gene in Synechocystis 6803 yields a functional hybrid Photosystem II reaction center complex. Plant Cell 3: 383–395

    Article  CAS  PubMed  Google Scholar 

  • Odom WR and Bricker TM (1992) Interaction of CPa-1 with the manganese-stabilizing protein of Photosystem II: Identification of domains cross-linked by l-ethyl-3-[3-(dimethylamino)propyl]carbodiimide. Biochemistry 31: 5616–5620

    Article  CAS  PubMed  Google Scholar 

  • Ohta H, Yoshida N, Sano M, Hirano M, Nakazato K and Enami I (1995) Evidence for electrostatic interaction of the loop A on CP 47 with the extrinsic 33 kDa protein. In: Mathis P (ed) Photosynthesis: From Light to Biosphere, Vol II, pp 361–364. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Ohta H, Suzuki T, Ueno M, Okumura A, Yoshihara S, Shen J-R and Enami I (2003) Extrinsic proteins of Photosystem II. An intermediate member of the PsbQ protein family in red algal PS II. Eur J Biochem 270: 4156–4163

    Article  CAS  PubMed  Google Scholar 

  • Ouellette AJA, Anderson LB and Barry BA (1998) Amine binding and oxidation at the catalytic site for photosynthetic water oxidation. Proc Natl Acad Sci USA 95: 2204–2209

    Article  CAS  PubMed  Google Scholar 

  • Putnam-Evans C and Bricker TM (1992) Site-directed mutagenesis of the CPa-1 protein of Photosystem II: Alteration of the basic residue pair 384,385R to 384,385G leads to a defect associated with the oxygen-evolving complex. Biochemistry 31: 11482–11488

    Article  CAS  PubMed  Google Scholar 

  • Putnam-Evans C and Bricker TM (1994) Site-directed mutagenesis of the CP47 protein of Photosystem II: Alteration of the basic residue 448R to 448G prevents the assembly of functional Photosystem II centers under chloride-limiting conditions. Biochemistry 33: 10770–10776

    Article  CAS  PubMed  Google Scholar 

  • Putnam-Evans C and Bricker TM (1997) Site-directed mutagenesis of the basic residues 321K to 321G in the CP 47 protein of Photosystem II alters the chloride requirement for growth and oxygen-evolving activity in Synechocystis 6803. Plant Mol Biol 34: 455–463

    Article  CAS  PubMed  Google Scholar 

  • Putnam-Evans C, Wu J and Bricker TM (1996a) Site-directed mutagenesis of the CP 47 protein of Photosystem II: Alteration of conserved charged residues which lie within lethal deletions of the large extrinsic loop E. Plant Mol Biol 32: 1191–1195

    Article  CAS  PubMed  Google Scholar 

  • Putnam-Evans C, Burnap R, Wu J, Whitmarsh J and Bricker TM (1996b) Site-directed mutagenesis of the CP 47 protein of Photosystem II: Alteration of conserved charged residues in the domain 364E-444R. Biochemistry 35: 4046–4053

    Article  CAS  PubMed  Google Scholar 

  • Qian M, Al-Khaldi SF, Putnam-Evans C, Bricker TM and Burnap RL (1997) Photoassembly of the Photosystem II (Mn)4cluster in site-directed mutants impaired in the binding of the manganese-stabilizing protein. Biochemistry 36: 15244–15252

    CAS  PubMed  Google Scholar 

  • Queirolo C (1992) Assemblage of spinach Photosystem II proteins: CPa-1 and MSP interactions. Ph.D. Dissertation, Louisiana State University, Baton Rouge

    Google Scholar 

  • Reith M and Munholland J (1993) A high-resolution gene map of the chloroplast genome of the red alga Porphyra purpurea. Plant Cell 5: 465–475

    Article  CAS  PubMed  Google Scholar 

  • Rhee K-H, Morris EP, Zheleva D, Hankamer B, Kühlbrandt W and Barber J (1997) Two-dimensional structure of plant Photosystem II at 8-Å resolution. Nature 389: 522–526

    CAS  Google Scholar 

  • Rhee K-H, Morris EP, Barber J and Kühlbrandt W (1998) Three-dimensional structure of the plant Photosystem II reaction center at 8 Å resolution. Nature 396: 283–286

    CAS  PubMed  Google Scholar 

  • Rochaix JD, Kuchka M, Mayfield S, Schirmer-Rahire M, Girard-Bascou J and Bennoun P (1989) Nuclear and chloroplast mutations affect the synthesis or stability of the chloroplast psbC gene product in Chlamydomonas reinhardtii. EMBO J 8: 1013–1021

    CAS  PubMed  Google Scholar 

  • Rögner M, Chisholm DA and Diner BA (1991) Site-directed mutagenesis of the psbC gene of Photosystem II: Isolation and functional characterization of CP43-less Photosystem II core complexes. Biochemistry 30: 5387–5395

    PubMed  Google Scholar 

  • Rokka A, Aro EM, Herrmann RG, Andersson B and Vener AV (2000) Dephosphorylation of Photosystem II reaction center proteins in plant photosynthetic membranes as an immediate response to abrupt elevation of temperature. Plant Physiol 123: 1525–1535

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg C, Christian J, Bricker TM and Putnam-Evans C (1999) Site-directed mutagenesis of glutamate residues in the large extrinsic loop of the Photosystem II protein CP 43 affects oxygen-evolving activity and PS II assembly. Biochemistry 38: 15994–16000

    Article  CAS  PubMed  Google Scholar 

  • Salter AH, Virgin I, Hagman A and Andersson B (1992) On the molecular mechanism of light-induced D1 protein degradation in Photosystem II core particles. Biochemistry 31: 3990–3998

    Article  CAS  PubMed  Google Scholar 

  • Sayre RT and Wrobel-Boerner EA (1994) Molecular topology of the Photosystem II chlorophyll a-binding protein, CP43: Topology of a thylakoid membrane protein. Photosynth Res 40: 11–19

    Article  CAS  Google Scholar 

  • Schubert WD, Klukas O, Saenger W, Witt HT, Fromme P and Krauß N (1998) A common ancestor for oxygenic and anoxygenic photosynthetic systems: A comparison based on the structural model of Photosystem I. J Mol Biol 280: 297–314

    Article  CAS  PubMed  Google Scholar 

  • Seidler A (1996) The extrinsic polypeptides of Photosystem II. Biochim Biophys Acta 1277: 35–60

    PubMed  Google Scholar 

  • Sexton TB, Christopher DA and Mullet JE (1990a) Light-induced switch in barley psbD-psbC promoter utilization: A novel mechanism regulating chloroplast gene expression. EMBO J 9: 4485–4494

    CAS  PubMed  Google Scholar 

  • Sexton TB, Jones JT and Mullet JE (1990b) Sequence and transcriptional analysis of the barley ctDNA region upstream of psbD-psbC encoding trnK(UUU), rps16, trnQ(UUG), psbK, psbI, and trnS(GCV). Curr Genet 17: 445–454

    Article  CAS  Google Scholar 

  • Shen G and Vermaas WFJ (1994) Mutation of chlorophyll ligands in the chlorophyll-binding CP47 protein as studied in a Synechocystis sp. PCC 6803 Photosystem I-less background. Biochemistry 33: 7379–7388

    CAS  PubMed  Google Scholar 

  • Shen G, Eaton-Rye JJ and Vermaas WFJ (1993) Mutation of histidine residues in CP47 leads to destabilization of the Photosystem II complex and to impairment of light energy transfer. Biochemistry 32: 5109–5115

    CAS  PubMed  Google Scholar 

  • Shen J-R, Burnap RL and Inoue Y (1995a) An independent role of cytochrome c-550 in cyanobacterial Photosystem II as revealed by double-deletion mutagenesis of the psbO and psbV genes in Synechocystis sp. PCC 6803. Biochemistry 34: 12661–12668

    CAS  PubMed  Google Scholar 

  • Shen J-R, Vermaas W and Inoue Y (1995b) The role of cytochrome c-550 as studied through reverse genetics and mutant characterization in Synechocystis sp. PCC 6803. J Biol Chem 270: 6901–6907

    CAS  PubMed  Google Scholar 

  • Shen J-R, Qian M, Inoue Y and Burnap RL (1998) Functional characterization of Synechocystis sp. PCC 6803 ΔpsbU and ΔpsbV mutants reveals important roles of cytochrome c-550 in cyanobacterial oxygen evolution. Biochemistry 37: 1551–1558

    CAS  PubMed  Google Scholar 

  • Shipton CA and Barber J (1991) Photoinduced degradation of the D1 polypeptide in isolated reaction centers of Photosystem II: Evidence for an autoproteolytic process triggered by the oxidizing side of the photosystem. Proc Natl Acad Sci USA 88: 6691–6695

    CAS  PubMed  Google Scholar 

  • Soltis, DE, Soltis PS and Zanis ML (2002) Phylogeny of seed plants based on evidence from eight genes. Am J Bot 89: 1670–1681

    CAS  Google Scholar 

  • Summerfield TC, Galloway DJ and Eaton-Rye JJ (2001) The use of psbB for the identification of cyanobacterial lichen symbionts. In: PS2001 Proceedings: 12th International Congress on Photosynthesis, S3-041, CSIRO Publishing, Melbourne (CD-ROM)

    Google Scholar 

  • Summerfield TC, Shand JA, Bentley FK and Eaton-Rye JJ (2005) PsbQ (Sll1638) in Synechocystis sp. PCC 6803 is required for Photosystem II activity in specific mutants and in nutrient-limiting conditions. Biochemistry 44: 805–815

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Obokata J, Chunwongse J, Shinozaki K and Sugiura M (1987) Rapid splicing and stepwise processing of a transcript from the psbB operon in tobacco chloroplasts: Determination of the intron sites in petB and petD. Mol Gen Genet 209: 427–431

    Article  CAS  Google Scholar 

  • Thornton LE, Ohkawa H, Roose JL, Kashino Y, Keren N and Pakrasi HB (2004) Homologs of plant PsbP and PsbQ proteins are necessary for regulation of Photosystem II activity in the cyanobacterium Synechocystis 6803. Plant Cell 16: 2164–2175

    Article  CAS  PubMed  Google Scholar 

  • Tichy M and Vermaas W (1998) Functional analysis of combinatorial mutants altered in a conserved region in loop E of the CP47 protein in Synechocystis sp. PCC 6803. Biochemistry 37: 1523–1531

    Article  CAS  PubMed  Google Scholar 

  • Trebst A (1986) The topology of the plastoquinone and herbicide binding peptides of Photosystem II in the thylakoid membrane. Z Naturforsch 41c: 240–245

    Google Scholar 

  • Tronrud DE, Schmidt MF and Matthews BW (1986) Structure and X-ray amino acid sequence of a bacteriochlorophyll a protein from Prosthecochloris aestuarii refined at 1.9 Å resolution. J Mol Biol 188: 443–454

    Article  CAS  PubMed  Google Scholar 

  • Urbach E, Scanlan DJ, Distel DL, Waterbury JB and Chisholm SW (1998) Rapid diversification of marine picophytoplankton with dissimilar light-harvesting structures inferred from sequences of Prochlorococcus and Synechococcus (Cyanobacteria). J Mol Evol 46: 188–201

    CAS  PubMed  Google Scholar 

  • van Dorssen RJ, Breton J, Plijter JJ, Satoh K and van Gorkom HJ (1987a) Spectroscopic properties of the reaction center and of the 47 kDa protein of Photosystem II. Biochim Biophys Acta 893: 267–274

    Google Scholar 

  • van Dorssen RJ, Plijter JJ, Dekker JP, den Ouden A, Amesz J and van Gorkom HJ (1987b) Spectroscopic properties of chloroplast grana membranes and of the core of Photosystem II. Biochim Biophys Acta 890: 134–143

    Google Scholar 

  • Vasil’ev S, Orth P, Zouni A, Owens TG and Bruce D (2001) Excited-state dynamics in Photosystem II: Insights from the X-ray crystal structure. Proc Natl Acad Sci USA 98: 8602–8607

    CAS  PubMed  Google Scholar 

  • Vener AV, Ohad I and Andersson B (1998) Protein phosphorylation and redox sensing in chloroplast thylakoids. Curr Opin Plant Biol 1: 217–223

    Article  CAS  PubMed  Google Scholar 

  • Vener AV, Harms A, Sussman M and Vierstra RD (2001) Mass spectrometric resolution of reversible protein phosphorylation in photosynthetic membranes of Arabidopsis thaliana. J Biol Chem 276: 6959–6966

    Article  CAS  PubMed  Google Scholar 

  • Vermaas W (1993) Molecular-biological approaches to analyze Photosystem II structure and function. Ann Rev Plant Physiol Plant Mol Biol 44: 457–481

    CAS  Google Scholar 

  • Vermaas WFJ, Williams JGK and Arntzen CJ (1987) Sequencing and modification of psbB, the gene encoding the CP47 protein of Photosystem II, in the cyanobacterium Synechocystis 6803. Plant Mol Biol 8: 317–326

    Article  CAS  Google Scholar 

  • Vermaas WFJ, Ikeuchi M and Inoue Y (1988) Protein composition of the Photosystem II core complex in genetically engineered mutants of the cyanobacterium Synechocystis sp. PCC 6803. Photosynth Res 17: 97–113

    Article  CAS  Google Scholar 

  • Vermaas, WFJ, Shen G and Ohad I (1996) Chimeric CP47 mutants of the cyanobacterium Synechocystis sp. PCC 6803 carrying spinach sequences: Construction and function. Photosynth Res 48: 147–162

    Article  CAS  Google Scholar 

  • Virgin I, Ghanotakis DF and Andersson B (1990) Light-induced D1-protein degradation in isolated Photosystem II core complexes. FEBS Lett 269: 45–48

    Article  CAS  PubMed  Google Scholar 

  • Virgin I, Salter AH, Ghanotakis DF and Andersson B (1991) Light-induced D1 protein degradation is catalyzed by a serine-type protease. FEBS Lett 287: 125–128

    Article  CAS  PubMed  Google Scholar 

  • Virgin I, Salter AH, Hagman A, Vass I, Styring S and Andersson B (1992) Molecular mechanisms behind light-induced inhibition of Photosystem II electron transport and degradation of reaction center polypeptides. Biochim Biophys Acta 1101: 139–142

    CAS  Google Scholar 

  • Visscher KJ, Bergstöm H, Sundström V, Hunter CN and van Grondelle R (1989) Temperature-dependence of energy-transfer from the long wavelength antenna BChl-896 to the reaction center in Rhodospirillum-rubrum, Rhodobacter-sphaeroides (WT and M21 mutant) from 77 to 177K, studied by picosecond absorption-spectroscopy. Photosynth Res 22: 211–217

    Article  CAS  Google Scholar 

  • Westhoff P and Herrmann RG (1988) Complex RNA maturation in chloroplasts. The psbB operon from spinach. Eur J Biochem 171: 551–564

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Putnam-Evans C and Bricker TM (1996) Site-directed mutagenesis of the CP 47 protein of Photosystem II: 167W in the lumenally exposed loop C is required for Photosystem II assembly and stability. Plant Mol Biol 32: 537–542

    CAS  PubMed  Google Scholar 

  • Wu J, Masri N, Lee W, Frankel LK and Bricker TM (1999) Random mutagenesis in the large extrinsic loop E and transmembrane α-helix VI of the CP 47 protein of Photosystem II. Plant Mol Biol 39: 381–386

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y (2001) Quality control of Photosystem II. Plant Cell Physiol 42: 121–128

    CAS  PubMed  Google Scholar 

  • Yamamoto Y and Akasaka T (1995) Degradation of antenna chlorophyll-binding protein CP43 during photoinhibition of Photosystem II. Biochemistry 34: 9038–9045

    Article  CAS  PubMed  Google Scholar 

  • Young A, McChargue M, Frankel LK, Bricker TM and Putnam-Evans C (2002) Alterations of the oxygen-evolving apparatus induced by a 305Arg → 305Ser mutation in the CP43 protein of Photosystem II from Synechocystis sp. PCC 6803 under chloride-limiting conditions. Biochemistry 41: 15747–15753

    CAS  PubMed  Google Scholar 

  • Yu J and Vermaas WFJ (1990) Transcript levels and synthesis of Photosystem II components in cyanobacterial mutants with inactivated Photosystem II genes. Plant Cell 2: 315–322

    Article  CAS  PubMed  Google Scholar 

  • Zerges W, Girard-Bascou J and Rochaix J-D (1997) Translation of the chloroplast psbC mRNA is controlled by interactions between its 5′ leader and the nuclear loci TBC1 and TBC3 in Chlamydomonas reinhardtii. Mol Cell Biol 17: 3440–3448

    CAS  PubMed  Google Scholar 

  • Zerges W, Auchincloss AH and Rochaix J-D (2003) Multiple translational control sequences in the 5′ leader of the chloroplast psbC mRNA interact with nuclear gene products in Chlamydomonas reinhardtii. Genetics 163: 895–904

    CAS  PubMed  Google Scholar 

  • Zheleva D, Sharma J, Panico M, Morris HR and Barber J (1998) Isolation and characterization of monomeric and dimeric CP47-reaction center Photosystem II complexes. J Biol Chem 273: 16122–16127

    Article  CAS  PubMed  Google Scholar 

  • Ziegenhagen B and Fladung M (1997) Variation in the psbC gene region of gymnosperms and angiosperms as detected by a single restriction site polymorphism. Theor Appl Genet 94: 1065–1071

    Article  CAS  Google Scholar 

  • Zouni A, Witt H-T, Kern J, Fromme P, Krauß N, Saenger W and Orth P (2001) Crystal structure of Photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409: 739–743

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Eaton-Rye, J.J., Putnam-Evans, C. (2005). The CP47 and CP43 Core Antenna Components. In: Wydrzynski, T.J., Satoh, K., Freeman, J.A. (eds) Photosystem II. Advances in Photosynthesis and Respiration, vol 22. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4254-X_4

Download citation

Publish with us

Policies and ethics