Remote Sensing of Glyoxal by Differential Optical Absorption Spectroscopy (DOAS): Advancements in Simulation Chamber and Field Experiments

  • R. Volkamer
  • I. Barnes
  • U. Platt
  • L. T. Molina
  • M. J. Molina
Part of the Nato Science Series: IV: Earth and Environmental Science book series (NAIV, volume 62)


Air pollution in many large cities is linked with the photochemical transformation of primary pollutants like VOCs (volatile organic compounds) and NOx, which in the presence of sunlight foster the formation of secondary pollutants including ozone (O3) and secondary organic aerosol (SOA) (Finlayson-Pitts and Pitts 2000; Molina and Molina 2002). ‘Photochemical smog’ has adverse effects on human health (Kunzli et al. 2000; Evans et al. 2002), the ecosystem (Middleton et al. 1950; Gregg et al. 2003) and regional climate (Lelieveld et al. 2001; Ramanathan and Crutzen 2003).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alicke, B., A. Geyer, A. Hofzumahaus, F. Holland, S. Konrad, H.W. Patz, J. Schafer, J. Stutz, A. Volz-Thomas, and U. Platt; OH formation by HONO photolysis during the BERLIOZ experiment, Journal of Geophysical Research-Atmospheres, 108 (2003) 8247–8263.Google Scholar
  2. Atkinson, R.; Atmospheric chemistry of VOCs and NOx, Atmospheric Environment, 34 (2000) 2063–2101.CrossRefGoogle Scholar
  3. Atkinson, R. and J. Arey; Atmospheric Degradation of Volatile Organic Compounds, Chemical Review, 103 (2003) 4605–4638.Google Scholar
  4. Bandow, H. and N. Washida; Ring-Cleavage Reactions of Aromatic-Hydrocarbons Studied by Ft-Ir Spectroscopy .2. Photooxidation of Ortho-Xylenes, Meta-Xylenes, and Para-Xylenes in the Nox-Air System, Bulletin of the Chemical Society of Japan, 58 (1985a) 2541–2548.Google Scholar
  5. Bandow, H. and N. Washida; Ring-Cleavage Reactions of Aromatic-Hydrocarbons Studied by Ft-Ir Spectroscopy .3. Photooxidation of 1,2,3-Trimethylbenzenes, 1,2,4-Trimethylbenzenes, and 1,3,5-Trimethylbenzenes in the Nox-Air System, Bulletin of the Chemical Society of Japan, 58 (1985b) 2549–2555.Google Scholar
  6. Bloss, C., V. Wagner, A. Bonzanini, M.E. Jenkin, K. Wirtz, M. Martin-Reviejo, and M.J. Pilling; Evaluation of detailed aromatic mechanisms (MCMv3 and MCMv3.1) against environmental chamber data, Atmospheric Chemistry and Physics Discussion, 4 (2004a) 5683–5731.Google Scholar
  7. Bloss, C., V. Wagner, M.E. Jenkin, R. Volkamer, W.J. Bloss, J.D. Lee, D.E. Heard, K. Wirtz, M. Martin-Reviejo, G. Rea, J.C. Wenger, and M.J. Pilling; Development of a detailed chemical mechanism (MCMv3.1) for the atmosheric oxidation of aromatic hydrocarbons, Atmospheric Chemistry and Physics Discussions, 4 (2004b) 5733–5788.Google Scholar
  8. Borrego, C., P. Gomes, N. Barros, and A.I. Miranda; Importance of handling organic atmospheric pollutants for assessing air quality, Journal of Chromatography A, 889 (2000) 271–279.CrossRefGoogle Scholar
  9. Calvert, J.G., R. Atkinson, K.H. Becker, R.H. Kamens, J.H. Seinfeld, T.J. Wallington, and G. Yarwood (Eds.) (2002), The mechanisms of atmospheric oxidation of aromatic hydrocarbons, Oxford University Press, Oxford.Google Scholar
  10. Calvert, J.G., R. Atkinson, J.A. Kerr, S. Madronich, G.K. Moortgat, T.J. Wallington, and G. Yarwood (Eds.) (2000), The Mechanisms of Atmospheric Oxidation of the Alkenes, Oxford University Press, New York.Google Scholar
  11. Dibble, T.S.; Isomerization of OH-isoprene adducts and hydroxyalkoxy isoprene radicals, Journal of Physical Chemistry A, 106 (2002) 6643–6650. DOI: 10.1021/jp025682mCrossRefGoogle Scholar
  12. Evans, J., J. Levy, J. Hammit, C. Santos Burgoa, and M. Castillejos (2002), Health Benefits of Air Pollution Control, in Air Quality in the Mexico Megacity, edited by Molina, MJ. and L.T. Molina, chapter 4, 105–136, Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  13. Fayt, C. and M. van Roozendael; WinDoas 2.1 - Software User Manual, (2001)Google Scholar
  14. Finlayson-Pitts, B. and J.N. Pitts (Eds.) (2000), Chemistry of the Upper and Lower Atmosphere, Academic Press, San Francisco.Google Scholar
  15. Geiger, H., I. Barnes, J. Bejan, T. Benter, and M. Spittler; The tropospheric degradation of isoprene: an updated module for the regional atmospheric chemistry mechanism, Atmospheric Environment, 37 (2003) 1503–1519.CrossRefGoogle Scholar
  16. Gregg, J.W., C.G. Jones, and T.E. Dawson; Urbanization effects on tree growth in the vicinity of New York City, Nature, 424 (2003) 183–187.CrossRefGoogle Scholar
  17. Grosjean, E., J.B. DeAndrade, and D. Grosjean; Carbonyl products of the gas-phase reaction of ozone with simple alkenes, Environmental Science & Technology, 30 (1996a) 975–983.Google Scholar
  18. Grosjean, E., P.G. Green, and D. Grosjean; Liquid chromatography analysis of carbonyl (2,4- dinitrophenyl)hydrazones with detection by diode array ultraviolet spectroscopy and by atmospheric pressure negative chemical ionization mass spectrometry, Analytical Chemistry, 71 (1999) 1851–1861.CrossRefGoogle Scholar
  19. Grosjean, E. and D. Grosjean; The Reaction of Unsaturated Aliphatic Oxygenates with Ozone, Journal of Atmospheric Chemistry, 32 (1999) 205–232.CrossRefGoogle Scholar
  20. Grosjean, E., D. Grosjean, M.P. Fraser, and G.R. Cass; Air quality model evaluation data for organics .2. C-1-C-14 carbonyls in Los Angeles air, Environmental Science & Technology, 30 (1996b) 2687–2703.Google Scholar
  21. Ho, S.S.H. and J.Z. Yu; Feasibility of collection and analysis of airborne carbonyls by on-sorbent derivatization and thermal desorption, Analytical Chemistry, 74 (2002) 1232–1240.Google Scholar
  22. Jang, M.S., N.M. Czoschke, S. Lee, and R.M. Kamens; Heterogeneous Atmospheric Aerosol Production by Acid- Catalyzed Particle-Phase Reactions, Science, 298 (2002) 814–817.CrossRefGoogle Scholar
  23. Jenkin, M.E., S.M. Saunders, V. Wagner, and M.J. Pilling; Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds, Atmospheric Chemistry and Physics, 3 (2003) 181–193.Google Scholar
  24. Jing, L.H., S.M. Steinberg, and B.J. Johnson; Aldehyde and monocyclic aromatic hydrocarbon mixing ratios at an urban site in Las Vegas, Nevada, Journal of the Air & Waste Management Association, 51 (2001) 1359–1366.Google Scholar
  25. Kalberer, M., D. Paulsen, M. Sax, M. Steinbacher, J. Dommen, A.S.H. Prevot, R. Fisseha, E. Weingartner, V. Frankevich, R. Zenobi, and U. Baltensperger; Identification of polymers as major components of atmospheric organic aerosols, Science, 303 (2004) 1659–1662.CrossRefGoogle Scholar
  26. Kasai, H., N. Iwamoto-Tanaka, and S. Fukada; DNA modifications by the mutagen glyoxal: adduction to G and C, deamination of C and GC and GA cross-linking, Carcinogenesis, 19 (1998) 1459–1465.CrossRefGoogle Scholar
  27. Kawamura, K., S. Steinberg, and I.R. Kaplan; Homologous series of C-1-C-10 monocarboxylic acids and C-1-C-6 carbonyls in Los Angeles air and motor vehicle exhausts, Atmospheric Environment, 34 (2000) 4175–4191.CrossRefGoogle Scholar
  28. Klotz, B., S. Sorensen, I. Barnes, K.H. Becker, T. Etzkorn, R. Volkamer, U. Platt, K. Wirtz, and M. Martin-Reviejo; Atmospheric oxidation of toluene in a large-volume outdoor photoreactor: In situ determination of ring-retaining product yields, Journal of Physical Chemistry A, 102 (1998) 10289–10299.CrossRefGoogle Scholar
  29. Klotz, B., R. Volkamer, M.D. Hurley, M.P.S. Andersen, O.J. Nielsen, I. Barnes, T. Imamura, K. Wirtz, K.H. Becker, U. Platt, T.J. Wallington, and N. Washida; OH-initiated oxidation of benzene - Part II. Influence of elevated NOx concentrations, Physical Chemistry Chemical Physics, 4 (2002) 4399–4411.CrossRefGoogle Scholar
  30. Kunzli, N., R. Kaiser, S. Medina, M. Studnicka, O. Chanel, P. Filliger, M. Herry, F. Horak, V. Puybonnieux-Texier, P. Quenel, J. Schneider, R. Seethaler, J.C. Vergnaud, and H. Sommer; Public-health impact of outdoor and traffic-related air pollution: a European assessment, Lancet, 356 (2000) 795–801.CrossRefGoogle Scholar
  31. Lee, Y.N., X.L. Zhou, and K. Hallock; Atmospheric carbonyl compounds at a rural southeastern United States site, Journal of Geophysical Research-Atmospheres, 100 (1995) 25933–25944.Google Scholar
  32. Lelieveld, J., P.J. Crutzen, V. Ramanathan, M.O. Andreae, C.A.M. Brenninkmeijer, T. Campos, G.R. Cass, R.R. Dickerson, H. Fischer, J.A. de Gouw, A. Hansel, A. Jefferson, D. Kley, A.T.J. de Laat, S. Lal, M.G. Lawrence, J.M. Lobert, O.L. Mayol-Bracero, A.P. Mitra, T. Novakov, S.J. Oltmans, K.A. Prather, T. Reiner, H. Rodhe, H.A. Scheeren, D. Sikka, and J. Williams; The Indian Ocean Experiment: Widespread Air Pollution from South and Southeast Asia, Science, 291 (2001) 1031–1036.CrossRefGoogle Scholar
  33. Magneron, I., R. Thevenet, A. Mellouki, G. Le Bras, G.K. Moortgat, and K. Wirtz; A Study of the Photolysis and OH-initiated Oxidation of Acrolein and trans-Crotonaldehyde, Journal of Physical Chemistry A, 106 (2002) 2526–2537.CrossRefGoogle Scholar
  34. Middleton, J.T., J.B. Kendrick, and H.W. Schwalm; Injury to Herbaceous Plants by Smog or Air Pollution, USDA Plant Dis. Rep., 34 (1950) 245–252.Google Scholar
  35. Molina, M.J. and L.T. Molina (Eds.) (2002), Air Quality in the Mexico Megacity: An Integrated Assessment, Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  36. Moortgat, G.K., D. Grossmann, A. Boddenberg, G. Dallmann, A.P. Ligon, W.V. Turner, S. Gab, F. Slemr, W. Wieprecht, K. Acker, M. Kibler, S. Schlomski, and K. Bachmann; Hydrogen peroxide, organic peroxides and higher carbonyl compounds determined during the BERLIOZ campaign, Journal of Atmospheric Chemistry, 42 (2002) 443–463.CrossRefGoogle Scholar
  37. Paulson, S.E. and J.H. Seinfeld; Development and Evaluation of A Photooxidation Mechanism for Isoprene, Journal of Geophysical Research-Atmospheres, 97 (1992) 20703–20715.Google Scholar
  38. Platt, U. (1994), Differential Optical Absorption Spectroscopy, in Monitoring by Spectroscopic Techniques, edited by Sigrist, M.W., chapter 2, 27–84, Wiley & Sons, New York.Google Scholar
  39. Plum, C.N., E. Sanhueza, R. Atkinson, W.P.L. Carter, and J.N. Pitts; Oh Radical Rate Constants and Photolysis Rates of Alpha-Dicarbonyls, Environmental Science & Technology, 17 (1983) 479–484.CrossRefGoogle Scholar
  40. RADICAL; Evaluation of Radical Sources in Atmospheric Chemistry through Chamber and Laboratory studies, ENV4-CT97–0419 (2001)Google Scholar
  41. Ramanathan, V. and P.J. Crutzen; New directions: Atmospheric brown “Clouds”, Atmospheric Environment, 37 (2003) 4033–4035.CrossRefGoogle Scholar
  42. Saunders, S.M., M.E. Jenkin, R.G. Derwent, and M.J. Pilling; Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds, Atmospheric Chemistry and Physics, 3 (2003) 161–180.Google Scholar
  43. Smith, D.F., C.D. Mciver, and T.E. Kleindienst; Primary product distribution from the reaction of hydroxyl radicals with toluene at ppb NOX mixing ratios, Journal of Atmospheric Chemistry, 30 (1998) 209–228.CrossRefGoogle Scholar
  44. Volkamer, R. (2001), A DOAS Study on the Oxidation Mechanism of Aromatic Hydrocarbons under Simulated Atmospheric Conditions, Dissertation, University of Heidelberg, Germany Scholar
  45. Volkamer, R., B. Klotz, I. Barnes, T. Imamura, K. Wirtz, N. Washida, K.H. Becker, and U. Platt; OH-initiated oxidation of benzene - Part I. Phenol formation under atmospheric conditions, Physical Chemistry Chemical Physics, 4 (2002) 1598–1610.CrossRefGoogle Scholar
  46. Volkamer, R., L.T. Molina, M.J. Molina, T. Shirley, and W.H. Brune; DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air, Geophysical Research Letters, 32 (2005a) L08806, doi: 10.1029/2005GL022616.CrossRefGoogle Scholar
  47. Volkamer, R., U. Platt, and K. Wirtz; Primary and Secondary Glyoxal Formation from Aromatics: Experimental Evidence for the Bicycloalkyl-Radical Pathway from Benzene, Toluene, and p-Xylene, Journal of Physical Chemistry A, 105 (2001) 7865–7874.CrossRefGoogle Scholar
  48. Volkamer, R., P. Spietz, J.P. Burrows, and U. Platt; High-resolution absorption cross-section of Glyoxal in the UV/vis and IR spectral ranges, Journal of Photochemistry and Photobiology A: Chemistry, 172 (2005b) 35–42, doi: 10.1016/j.jphotochem. 2004.11.011.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • R. Volkamer
    • 1
  • I. Barnes
    • 2
  • U. Platt
    • 3
  • L. T. Molina
    • 1
  • M. J. Molina
    • 1
  1. 1.Department of Earth, Atmosphere and Planetary SciencesCambridgeUSA
  2. 2.FB C - Physikalische ChemieBergische Universität WuppertalGermany
  3. 3.Institut für UmweltphysikUniversity of HeidelbergGermany

Personalised recommendations